Long-Chain Modification of the Tips and Inner Walls of MWCNTs and Their Nanocomposite Reverse Osmosis Membranes
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Solvents
2.2. Oxidation of Multi-Walled Carbon Nanotubes
2.3. Reduction of Acidified Carbon Nanotubes
2.4. Synthesis of Dimethyldodecanedioate
2.5. Synthesis of Dodecanedioicacid-1-Methylester
2.6. Synthesis of 12-Chloro-12-Oxododecanedioic Acid-Methyl Ester
2.7. Grafting Reaction of MWCNTs with 12-Chloro-12-Oxododecanedioic Acid-Methyl Ester
2.8. Fabrication of Polyamide Membrane and MWCNT-Polyamide Membrane
2.9. Characterization of MWCNTs and Polyamide Membrane
2.10. Membrane Filtration Test
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Misdan, N.; Lau, W.J.; Ismail, A.F. Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane—Current development, challenges and future prospects. Desalination 2012, 287, 228–237. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, G.-Z.; Qiu, S.; Cheng, L.-H.; Chen, H.-L. Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. Desalination Water Treat. 2011, 34, 19–24. [Google Scholar] [CrossRef]
- Lijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar]
- Kotsilkova, R.; Ivanov, E.; Krusteva, E.; Silvestre, C.; Cimmino, S.; Duraccio, D. Isotactic polypropylene composites reinforced with multiwall carbon nanotubes, part 2: Thermal and mechanical properties related to the structure. J. Appl. Polym. Sci. 2009, 115, 3576–3585. [Google Scholar] [CrossRef]
- Heller, I.; Kong, J.; Heering, H.A.; Williams, K.A.; Lemay, A.S.G.; Dekker, C. Individual Single-Walled Carbon Nanotubes as Nanoelectrodes for Electrochemistry. Nano Lett. 2004, 5, 137–142. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, D.R.; Hong, J.; Jung, D.; Shim, S.E. Significance of the Dispersion Stability of Carbon Nanotubes on the Thermal Conductivity of Nylon 610 Nanocomposite. J. Dispers. Sci. Technol. 2010, 31, 1230–1235. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Kocak, I.; Al-Mayouf, A.; Bartlett, P.N. Solid phase modification of carbon nanotubes with anthraquinone and nitrobenzene functional groups. Electrochem. Commun. 2013, 34, 258–262. [Google Scholar] [CrossRef]
- Williams, K.A.; Veenhuizen, P.; de la Torre, B.G.; Eritja, R.; Dekker, C. Nanotechnology: Carbon nanotubes with DNA recognition. Nature 2002, 420, 761. [Google Scholar] [CrossRef]
- Zhang, F.; Xia, Y.; Xu, L.; Gu, N. Surface modification and microstructure of single-walled carbon nanotubes for dental resin-based composites. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 86, 90–97. [Google Scholar] [CrossRef]
- Bussy, C.; Pinault, M.; Cambedouzou, J.; Landry, M.J.; Jegou, P.; Mayne-L’Hermite, M.; Launois, P.; Boczkowski, J.; Lanone, S. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Part. Fibre Toxicol. 2012, 9, 46. [Google Scholar] [CrossRef]
- Battigelli, A.; Ménard-Moyon, C.; Da Ros, T.; Prato, M.; Bianco, A. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv. Drug Deliv. Rev. 2013, 65, 1899–1920. [Google Scholar] [CrossRef] [PubMed]
- Striolo, A. The Mechanism of Water Diffusion in Narrow Carbon Nanotubes. Nano Lett. 2006, 6, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Corry, B. Intrinsic Ion Selectivity of Narrow Hydrophobic Pores. J. Phys. Chem. B 2009, 113, 7642–7649. [Google Scholar] [CrossRef] [PubMed]
- Sahebian, S.; Zebarjad, S.M.; Khaki, J.V.; Lazzeri, A. A study on the dependence of structure of multi-walled carbon nanotubes on acid treatment. J. Nanostruct. Chem. 2015, 5, 287–293. [Google Scholar] [CrossRef]
- Kyotani, T.; Nakazaki, S.; Xu, W.-H.; Tomita, A. Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation. Carbon 2001, 39, 782–785. [Google Scholar] [CrossRef]
- Saito, T.; Matsushige, K.; Tanaka, K. Chemical treatment and modification of multi-walled carbon nanotubes. Phys. B Condens. Matter 2002, 323, 280–283. [Google Scholar] [CrossRef]
- Gromov, A.; Dittmer, S.; Svensson, J.; Nerushev, O.A.; Perez-García, S.A.; Licea-Jiménez, L.; Rychwalski, R.; Campbell, E.E.B. Covalent amino-functionalisation of single-wall carbon nanotubes. J. Mater. Chem. 2005, 15, 3334–3339. [Google Scholar] [CrossRef]
- Goyanes, S.; Rubiolo, G.; Salazar, A.; Jimeno, A.; Corcuera, M.; Mondragon, I. Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diam. Relat. Mater. 2007, 16, 412–417. [Google Scholar] [CrossRef]
- Chen, Y.; Mitra, S. Fast Microwave-Assisted Purification, Functionalization and Dispersion of Multi-Walled Carbon Nanotubes. J. Nanosci. Nanotechnol. 2008, 8, 5770–5775. [Google Scholar] [CrossRef]
- Kim, S.D.; Park, S.; Lee, Y. Chemical Surface Treatment for Highly Improved Dispersibility of Multi-Walled Carbon Nanotubes in Water. J. Dispers. Sci. Technol. 2008, 29, 426–430. [Google Scholar] [CrossRef]
- Kanbur, Y.; Küçükyavuz, Z. Surface Modification and Characterization of Multi-Walled Carbon Nanotube. Full Nanotub. Carbon Nanostruct. 2011, 19, 497–504. [Google Scholar] [CrossRef]
- Rahimpour, A.; Jahanshahi, M.; Khalili, S.; Mollahosseini, A.; Zirepour, A.; Rajaeian, B. Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 2012, 286, 99–107. [Google Scholar] [CrossRef]
- Dong, C.; Campell, A.S.; Eldawud, R.; Perhinschi, G.; Rojanasakul, Y.; Dinu, C.Z. Effects of acid treatment on structure, properties and biocompatibility of carbon nanotubes. Appl. Surf. Sci. 2013, 264, 261–268. [Google Scholar] [CrossRef]
- Le, V.T.; Ngo, C.L.; Le, Q.T.; Ngo, T.T.; Nguyen, D.N.; Vu, M.T. Surface modification and functionalization of carbon nanotube with some organic compounds. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 035017. [Google Scholar] [CrossRef]
- Kim, H.J.; Baek, Y.; Choi, K.; Kim, D.-G.; Kang, H.; Choi, Y.-S.; Yoon, J.; Lee, J.-C. The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs. RSC Adv. 2014, 4, 32802–32810. [Google Scholar] [CrossRef]
- Kim, H.J.; Choi, K.; Baek, Y.; Kim, D.-G.; Shim, J.; Yoon, J.; Lee, J.-C. High-Performance Reverse Osmosis CNT/Polyamide Nanocomposite Membrane by Controlled Interfacial Interactions. ACS Appl. Mater. Interfaces 2014, 6, 2819–2829. [Google Scholar] [CrossRef]
- Vatanpour, V.; Esmaeili, M.; Farahani, M.H.D.A. Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes. J. Membr. Sci. 2014, 466, 70–81. [Google Scholar] [CrossRef]
- Zhao, H.; Qiu, S.; Wu, L.; Zhang, L.; Chen, H.; Gao, C. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J. Membr. Sci. 2014, 450, 249–256. [Google Scholar] [CrossRef]
- Farahbakhsh, J.; Delnavaz, M.; Vatanpour, V. Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties. Desalination 2017, 410, 1–9. [Google Scholar] [CrossRef]
- Tiraferri, A.; Vecitis, C.D.; Elimelech, M. Covalent Binding of Single-Walled Carbon Nanotubes to Polyamide Membranes for Antimicrobial Surface Properties. ACS Appl. Mater. Interfaces 2011, 3, 2869–2877. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.W.; Wang, J.; Qu, J.W. Study on the Chemical Modification of the Walls of Carbon Nanotubes by K2Cr2O7 and HNO3. Adv. Mater. Res. 2011, 197–198, 571–574. [Google Scholar]
- Wepasnick, K.A.; Smith, B.A.; Schrote, K.E.; Wilson, H.K.; Diegelmann, S.R.; Fairbrother, D.H. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 2011, 49, 24–36. [Google Scholar] [CrossRef]
- Hattori, Y.; Watanabe, Y.; Kawasaki, S.; Okino, F.; Pradhan, B.; Kyotani, T.; Tomita, A.; Touhara, H. Carbon-alloying of the rear surfaces of nanotubes by direct fluorination. Carbon 1999, 37, 1033–1038. [Google Scholar] [CrossRef]
- Khabashesku, V.N.; Billups, W.E.; Margrave, J.L. Fluorination of Single-Wall Carbon Nanotubes and Subsequent Derivatization Reactions. Acc. Chem. Res. 2002, 35, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.-Q.; Sacher, E. Strongly Enhanced Interaction between Evaporated Pt Nanoparticles and Functionalized Multiwalled Carbon Nanotubes via Plasma Surface Modifications: Effects of Physical and Chemical Defects. J. Phys. Chem. C 2008, 112, 4075–4082. [Google Scholar] [CrossRef]
- Loos, M.R.; Nahorny, J.; Fontana, L.C. Plasma Modification of Carbon Nanotubes. Curr. Org. Chem. 2013, 17, 1880–1893. [Google Scholar] [CrossRef]
- Jung, C.-H.; Kim, D.-K.; Choi, J.-H. Surface modification of multi-walled carbon nanotubes by radiation-induced graft polymerization. Curr. Appl. Phys. 2009, 9, S85–S87. [Google Scholar] [CrossRef]
- Zeng, J.; Kang, X.; Gao, G.-Y.; Gao, F.; Zhang, H.-L. Sidewall functionalization of carbon nanotubes through electrophilic substitution. J. Nanosci. Nanotechnol. 2011, 11, 3385–3392. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Shi, T.-J.; Jin, W.-Y.; Zou, Y. Modification of Multi-walled Carbon Nanotubes with p-Aminobenzenesulfonic Acid by a Two-step Method. Acta Chim. Sin. 2008, 66, 552–556. [Google Scholar]
- Kathi, J.; Rhee, K.Y. Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J. Mater. Sci. 2007, 43, 33–37. [Google Scholar] [CrossRef]
- Darabi, H.R.; Tehrani, M.J.; Aghapoor, K.; Mohsenzadeh, F.; Malekfar, R. A new protocol for the carboxylic acid sidewall functionalization of single-walled carbon nanotubes. Appl. Surf. Sci. 2012, 258, 8953–8958. [Google Scholar] [CrossRef]
- Salvador-Morales, C.; Basiuk, E.; Basiuk, V.A.; Green, M.L.H.; Sim, R.B. Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2008, 8, 2347–2356. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Qu, X.-Y.; Zhang, L.; Cheng, L.-H.; Chen, H.-L.; Gao, C.-J. Preparation and characterization of surface-modified zeolite-polyamide thin film nanocomposite membranes for desalination. Desalination Water Treat. 2011, 34, 6–12. [Google Scholar] [CrossRef]
- Mansourpanah, Y.; Madaeni, S.; Rahimpour, A.; Adeli, M.; Hashemi, M.; Moradian, M. Fabrication new PES-based mixed matrix nanocomposite membranes using polycaprolactone modified carbon nanotubes as the additive: Property changes and morphological studies. Desalination 2011, 277, 171–177. [Google Scholar] [CrossRef]
- Park, J.; Choi, W.; Kim, S.H.; Chun, B.H.; Bang, J.; Lee, K.B. Enhancement of Chlorine Resistance in Carbon Nanotube Based Nanocomposite Reverse Osmosis Membranes. Desalination Water Treat. 2010, 15, 198–204. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.; Rahbari-Sisakht, M.; Daneshfar, A.; Ghanbari, M.; Mayahi, A.; Matsuura, T.; Ismail, A. A novel thin film nanocomposite reverse osmosis membrane with superior anti-organic fouling affinity for water desalination. Desalination 2014, 368, 106–113. [Google Scholar] [CrossRef]
- Chan, W.-F.; Chen, H.-Y.; Surapathi, A.; Taylor, M.G.; Shao, X.; Marand, E.; Johnson, J.K. Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water Desalination. ACS Nano 2013, 7, 5308–5319. [Google Scholar] [CrossRef]
- Li, Q.; Yang, D.-F.; Wang, J.-H.; Wu, Q.; Liu, Q.-Z. Biomimetic Modification and Desalination Behavior of (15, 15) Carbon Nanotubes with a Diameter Larger than 2 nm. Acta Phys. Chim. Sin. 2016, 32, 691–700. [Google Scholar] [CrossRef]
- Li, Q.; Yang, D.; Shi, J.; Xu, X.; Yan, S.; Liu, Q. Biomimetic modification of large diameter carbon nanotubes and the desalination behavior of its reverse osmosis membrane. Desalination 2016, 379, 164–171. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Yang, D.; Liu, Q.; Wang, J.; Ma, Z.; Xu, D.; Gao, J. Long-Chain Modification of the Tips and Inner Walls of MWCNTs and Their Nanocomposite Reverse Osmosis Membranes. Membranes 2022, 12, 794. https://doi.org/10.3390/membranes12080794
Li Q, Yang D, Liu Q, Wang J, Ma Z, Xu D, Gao J. Long-Chain Modification of the Tips and Inner Walls of MWCNTs and Their Nanocomposite Reverse Osmosis Membranes. Membranes. 2022; 12(8):794. https://doi.org/10.3390/membranes12080794
Chicago/Turabian StyleLi, Qing, Dengfeng Yang, Qingzhi Liu, Jianhua Wang, Zhun Ma, Dongmei Xu, and Jun Gao. 2022. "Long-Chain Modification of the Tips and Inner Walls of MWCNTs and Their Nanocomposite Reverse Osmosis Membranes" Membranes 12, no. 8: 794. https://doi.org/10.3390/membranes12080794
APA StyleLi, Q., Yang, D., Liu, Q., Wang, J., Ma, Z., Xu, D., & Gao, J. (2022). Long-Chain Modification of the Tips and Inner Walls of MWCNTs and Their Nanocomposite Reverse Osmosis Membranes. Membranes, 12(8), 794. https://doi.org/10.3390/membranes12080794