Thin-Film Composite Membranes with a Carbon Nanotube Interlayer for Organic Solvent Nanofiltration
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication of the TFC OSN Membrane
2.3. Characterization
2.4. OSN Performance Test
3. Results and Discussion
3.1. Structure and Properties of PDA-CNT Interlayer on the PTFE Substrate
3.2. Effect of CNT Interlayer on the Formation of PA Active Layer
3.3. OSN Performance of the Fabricated TFC-PA Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marchetti, P.; Jimenez Solomon, M.F.; Szekely, G.; Livingston, A.G. Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 2014, 114, 10735–10806. [Google Scholar] [CrossRef]
- Namvar-Mahboub, M.; Pakizeh, M. Optimization of preparation conditions of polyamide thin film composite membrane for organic solvent nanofiltration. Korean J. Chem. Eng. 2014, 31, 327–337. [Google Scholar] [CrossRef]
- Wu, C.; Liu, S.; Wang, Z.; Zhang, J.; Wang, X.; Lu, X.; Jia, Y.; Hung, W.S.; Lee, K.R. Nanofiltration membranes with dually charged composite layer exhibiting super-high multivalent-salt rejection. J. Membr. Sci. 2016, 517, 64–72. [Google Scholar] [CrossRef]
- Vandezande, P.; Gevers, L.E.; Vankelecom, I.F. Solvent resistant nanofiltration: Separating on a molecular level. Chem. Soc. Rev. 2008, 37, 365–405. [Google Scholar] [CrossRef]
- Lin, C.T.; Livingston, A.G. Nanofiltration membrane cascade for continuous solvent exchange. Chem. Eng. Sci. 2007, 62, 2728–2736. [Google Scholar] [CrossRef]
- Thompson, K.A.; Mathias, R.; Kim, D.; Kim, J.; Rangnekar, N.; Johnson, J.R.; Hoy, S.J.; Bechis, I.; Tarzia, A.; Jelfs, K.E. N-Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 2020, 369, 310–315. [Google Scholar] [CrossRef]
- Goh, K.S.; Chen, Y.; Chong, J.Y.; Bae, T.H.; Wang, R. Thin film composite hollow fibre membrane for pharmaceutical concentration and solvent recovery. J. Membr. Sci. 2021, 621, 119008. [Google Scholar] [CrossRef]
- Shui, X.; Li, J.; Zhang, M.; Fang, C.; Zhu, L. Tailoring ultrathin microporous polyamide films with rapid solvent transport by molecular layer-by-layer deposition. J. Membr. Sci. 2021, 628, 119249. [Google Scholar] [CrossRef]
- Khorshidi, B.; Thundat, T.; Fleck, B.A.; Sadrzadeh, M. A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes. Sci. Rep. 2016, 6, 22069. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.K.; Jeong, B.H.; Huang, X.F.; Hoek, E.M.V. Impacts of Reaction and Curing Conditions on Polyamide Composite Reverse Osmosis Membrane Properties. J. Membr. Sci. 2008, 311, 34–45. [Google Scholar] [CrossRef]
- Klaysom, C.; Hermans, S.; Gahlaut, A.; Van Craenenbroeck, S.; Vankelecom, I.F.J. Polyamide/Polyacrylonitrile (PA/PAN) Thin Film Composite Osmosis Membranes: Film Optimization, Characterization and Performance Evaluation. J. Membr. Sci. 2013, 445, 25–33. [Google Scholar] [CrossRef]
- Khorshidi, B.; Thundat, T.; Fleck, B.A.; Sadrzadeh, M. Thin Film Composite Polyamide Membranes: Parametric Study on the Influence of Synthesis Conditions. RSC Adv. 2015, 5, 54985–54997. [Google Scholar] [CrossRef] [Green Version]
- Solomon, J.; Fernanda, M. Thin Film Composite Membranes by Interfacial Polymerization for Organic Solvent Nanofiltration. Ph.D. Thesis, Imperial College London, London, UK, 2013. [Google Scholar]
- Karan, S.; Jiang, Z.; Livingston, A.G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 2015, 348, 1347. [Google Scholar] [CrossRef]
- Gong, G.H.; Wang, P.; Zhou, Z.Y.; Hu, Y.X. New Insights into the Role of an Interlayer for the Fabrication of Highly Selective and Permeable Thin-Film Composite Nanofiltration Membrane. ACS Appl. Mater. Interfaces 2019, 11, 7349–7356. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.L.; Liu, Z.J.; Huang, H.Y.; Fan, X.F.; Wang, Y.; Song, Y.X.; Song, C.W. Preparation and characterization of high-performance electrospun forward osmosis membrane by introducing a carbon nanotube interlayer. J. Membr. Sci. 2020, 616, 118563. [Google Scholar] [CrossRef]
- Park, M.J.; Wang, C.; Seo, D.H.; Gonzales, R.R.; Matsuyama, H.; Shon, H.K. Inkjet printed single walled carbon nanotube as an interlayer for high performance thin film composite nanofiltration membrane. J. Membr. Sci. 2021, 620, 118901. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Hu, Y.X.; Boo, C.H.; Liu, Z.Y.; Li, J.Q.; Deng, L.Y.; An, X.C. High-Performance Thin-Film Composite Membrane with an Ultrathin Spray-Coated Carbon Nanotube Interlayer. Environ. Sci. Technol. Lett. 2018, 5, 243–248. [Google Scholar] [CrossRef]
- Wu, M.B.; Lv, Y.; Yang, H.C.; Liu, L.F.; Zhang, X.; Xu, Z.K. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. J. Membr. Sci. 2016, 515, 238–244. [Google Scholar] [CrossRef]
- Long, L.; Wu, C.Y.; Yang, Z.; Tang, C.Y.Y. Carbon Nanotube Interlayer Enhances Water Permeance and Antifouling Performance of Nanofiltration Membranes: Mechanisms and Experimental Evidence. Environ. Sci. Technol. 2022, 56, 2656–2664. [Google Scholar] [CrossRef]
- Valtcheva, B.I.; Kumbharkar, C.S.; Kim, F.J.; Bhole, Y.; Livingston, A.G. Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. J. Membr. Sci. 2014, 457, 62–72. [Google Scholar] [CrossRef]
- Briguori, C.; Sarais, C.; Colombo, A. The polytetrafluoroethylene-covered stent: A device with multiple potential advantages. Int. J. Cardiovasc. Interv. 2009, 4, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.S.; Zhong, Z.X.; Wang, Y.; Xing, W.H.; Drioli, E. Progress and perspectives in PTFE membrane: Preparation, modification, and applications. J. Membr. Sci. 2018, 549, 332–349. [Google Scholar] [CrossRef]
- Mortazavi, M.; Fazeli, A.; Moghaddam, S. Scalable Bonding of Nanofibrous Polytetrafluoroethylene (PTFE) Membranes on Microstructures. J. Micromech. Microeng. 2018, 28, 015001. [Google Scholar] [CrossRef]
- Jin, X.; Strueben, J.; Heepe, L.; Kovalev, A.; Mishra, Y.K.; Adelung, R.; Gorb, S.N.; Staubitz, A. Joining the Un-Joinable: Adhesion Between Low Surface Energy Polymers Using Tetrapodal ZnO Linkers. Adv. Mater. 2012, 24, 5676–5680. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, Y.; Qiu, W.; He, A.; Xu, Z.K. Polydopamine Coatings with Nanopores for Versatile Molecular Separation. ACS Appl. Mat. Interfaces 2017, 9, 14437–14444. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Z.; Xie, W.; Gao, S.J.; Zhang, F.; Zhang, W.B.; Liu, Z.Y.; Jin, J. Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination. Small 2016, 12, 5034–5041. [Google Scholar] [CrossRef]
- Gonzales, R.R.; Zhang, L.; Guan, K.C.; Park, M.J.; Phuntsho, S.; Wahab, A.A.; Matsuyama, H.; Shon, H.K. Aliphatic polyketone-based thin film composite membrane with mussel-inspired polydopamine intermediate layer for high performance osmotic power generation. Desalination 2021, 516, 115222. [Google Scholar] [CrossRef]
- Ma, X.H.; Yao, Z.K.; Yang, Z.; Guo, H.; Xu, Z.L.; Tang, C.Y.Y.; Elimelech, M. Nanofoaming of Polyamide Desalination Membranes to Tune Permeability and Selectivity. Environ. Sci. Technol. Lett. 2018, 5, 123–130. [Google Scholar] [CrossRef]
- Wang, J.J.; Yang, H.C.; Wu, M.B.; Zhang, X.; Xu, Z.K. Nanofiltration Membranes with Cellulose Nanocrystals as an Interlayer for Unprecedented Performance. J. Mater. Chem. A 2017, 5, 16289. [Google Scholar] [CrossRef]
- Xia, L.; Ren, J.; Weyd, M.; McCutcheon, J.R. Ceramic-supported thin film composite membrane for organic solvent nanofiltration. J. Membr. Sci. 2018, 563, 857–863. [Google Scholar] [CrossRef]
- Kosaraju, P.B.; Sirkar, K.K. Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration. J. Membr. Sci. 2008, 321, 155–161. [Google Scholar] [CrossRef]
- Sun, S.-P.; Chung, T.-S.; Lu, K.-J.; Chan, S.-Y. Enhancement of flux and solvent stability of Matrimid® thin-film composite membranes for organic solvent nanofiltration. AIChE J. 2014, 60, 3623–3633. [Google Scholar] [CrossRef]
- Jimenez Solomon, M.F.; Bhole, Y.; Livingston, A.G. High flux membranes for organic solvent nanofiltration (OSN)-Interfacial polymerization with solvent activation. J. Membr. Sci. 2012, 423, 371–382. [Google Scholar] [CrossRef]
- Sun, S.-P.; Chan, S.-Y.; Chung, T.-S. A slow-fast phase separation (SFPS) process to fabricate dual-layer hollow fiber substrates for thin-film composite (TFC) organic solvent nanofiltration (OSN) membranes. Chem. Eng. Sci. 2015, 129, 232–242. [Google Scholar] [CrossRef]
- Peyravi, M.; Rahimpour, A.; Jahanshahi, M. Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. J. Membr. Sci. 2012, 423, 225–237. [Google Scholar] [CrossRef]
- Guo, X.; Liu, D.; Han, T.; Huang, H.; Yang, Q.; Zhong, C. Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration. AIChE J. 2017, 63, 1303–1312. [Google Scholar] [CrossRef]
- Sorribas, S.; Gorgojo, P.; Tellez, C.; Coronas, J.; Livingston, A.G. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 2013, 135, 15201–15208. [Google Scholar] [CrossRef]
Dye Type | Charge | Molecular Weight (Da) | Molecular Size (nm × nm) |
---|---|---|---|
Methyl orange | - | 327 | 1.13 × 0.42 |
Methyl violet | - | 394 | 1.44 × 1.45 |
Acid magenta | - | 588 | 1.1 × 1.2 |
Congo red | - | 697 | 2.56 × 0.73 |
Bright blue B | - | 826 | 2.06 × 1.79 |
Samples | CNT Dispersion Volume (mL) | Surface Roughness (nm) | Average Pore Size (nm) | Water Contact Angle (°) |
---|---|---|---|---|
PTFE | 0 | 148.2 ± 36.1 | 261.5 | 100.9 ± 3.7 |
PTFE-CNT-1 | 1 | 69.9 ± 7.6 | 146.4 | 81.3 ± 4.9 |
PTFE-CNT-2 | 2 | 54.3 ± 5.6 | 69.9 | 63.7 ± 3.1 |
PTFE-CNT-3 | 3 | 38.8 ± 4.6 | 51.66 | 42.6 ± 2.2 |
PTFE-CNT-4 | 4 | 27.3 ± 3.4 | 47.7 | 43.1 ± 1.9 |
Samples | CNT Amount (mL) | C1s (%) | O1s (%) | N1s (%) | O/N Ratio | Degree of Network Cross-Linking (%) |
---|---|---|---|---|---|---|
Fully cross-linked (Y = 0) | ̶ | 75.00 | 12.50 | 12.50 | 1.00 | 100% |
Fully linear (X = 0) | ̶ | 71.40 | 19.10 | 9.50 | 2.00 | 0% |
TFC PA-1 | 1.0 | 70.07 | 16.23 | 10.38 | 1.56 | 34% |
TFC PA-2 | 2.0 | 71.58 | 15.22 | 10.18 | 1.50 | 40% |
TFC PA-3 | 3.0 | 70.99 | 13.60 | 9.98 | 1.36 | 54% |
TFC PA-4 | 4.0 | 70.26 | 16.37 | 10.09 | 1.62 | 29% |
Membrane | Substrate | Solvent/Dye (MW) | Permeance (LMH/Bar) | Rejection (%) | Ref. |
---|---|---|---|---|---|
PA | Ceramic substrate | Methanol/Methyl orange (327) | 26.3 | 30.6 | [31] |
Polypropylene | Methanol/Brilliant blue R (826) | 1.5 | 88 | [32] | |
Matrimid® 5218 | Methanol/Tetracycline (444) | 5.1 | 95 | [33] | |
XP84 | Methanol/Styrene oligomers (400) | 1.5 | 98 | [34] | |
Matrimid® polyimide dual layer | Methanol/Ramazol brilliant blue (626.5) | 0.9 | 99.3 | [35] | |
PSF-SPESS | Methanol/Bromothymol blue (624) | 2.4 | 92 | [36] | |
PA/MOFs | Crosslinked Matrimid® 5218 | Methanol/Tetracycline (444) | 20 | 99 | [37] |
P84 | Methanol/Styrene oligomers (236) | 4.2 | 96 | [38] | |
PA | PTFE | Methanol/ Methyl orange (327) | 7.9 | 92 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, M.; Zhu, Y.; Gong, G.; Qiao, L. Thin-Film Composite Membranes with a Carbon Nanotube Interlayer for Organic Solvent Nanofiltration. Membranes 2022, 12, 817. https://doi.org/10.3390/membranes12080817
Liao M, Zhu Y, Gong G, Qiao L. Thin-Film Composite Membranes with a Carbon Nanotube Interlayer for Organic Solvent Nanofiltration. Membranes. 2022; 12(8):817. https://doi.org/10.3390/membranes12080817
Chicago/Turabian StyleLiao, Mingjia, Yun Zhu, Genghao Gong, and Lei Qiao. 2022. "Thin-Film Composite Membranes with a Carbon Nanotube Interlayer for Organic Solvent Nanofiltration" Membranes 12, no. 8: 817. https://doi.org/10.3390/membranes12080817
APA StyleLiao, M., Zhu, Y., Gong, G., & Qiao, L. (2022). Thin-Film Composite Membranes with a Carbon Nanotube Interlayer for Organic Solvent Nanofiltration. Membranes, 12(8), 817. https://doi.org/10.3390/membranes12080817