Optimization of CO2/H2 Separation over Ba-SAPO-34 Zeolite Membrane Synthesized by Microwave Heating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Zeolite Membrane
2.2. Design of Experiments
2.3. CO2/H2 Gas Separation Studies
3. Results
3.1. Characterization Results of Ba-SAPO-34
3.2. Experiment Design Matrix
3.3. Response Surface Modeling
3.3.1. Response Surface Modeling of CO2 Permeance
3.3.2. Response Surface Modeling of CO2/H2 Separation Selectivity
3.4. Optimization Studies
3.5. Comparison of CO2/H2 Separation Performance with the Other Zeolite Membranes Reported in the Literature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ismail, A.F.; David, L.I.B. A review on the latest development of carbon membranes for gas separatio. J. Membr. Sci. 2001, 193, 1–18. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef]
- Koros, W.J.; Mahajan, R. Pushing the limits on possibilities for large scale gas separation: Which strategies? J. Membr. Sci. 2000, 175, 181–196. [Google Scholar] [CrossRef]
- Adhikari, S.; Fernando, S. Hydrogen Membrane Separation Techniques. Ind. Eng. Chem. Res. 2006, 45, 875–881. [Google Scholar] [CrossRef]
- Lu, G.Q.; Diniz da Costa, J.C.; Duke, M.; Giessler, S.; Socolow, R.; Williams, R.H.; Kreutz, T. Inorganic membranes for hydrogen production and purification: A critical review and perspective. J. Colloid Interface Sci. 2007, 314, 589–603. [Google Scholar] [CrossRef]
- Moon, J.-H.; Bae, J.-H.; Han, Y.-J.; Lee, C.-H. Adsorbent/membrane hybrid (AMH) system for hydrogen separation: Synergy effect between zeolite 5A and silica membrane. J. Membr. Sci. 2010, 356, 58–69. [Google Scholar] [CrossRef]
- Bai, X.; Shi, Z.; Xia, H.; Li, S.; Liu, Z.; Liang, H.; Liu, Z.; Wang, B.; Qiao, Z. Machine-Learning-Assisted High-Throughput computational screening of Metal—Organic framework membranes for hydrogen separation. Chem. Eng. J. 2022, 446, 136783. [Google Scholar] [CrossRef]
- Gray, M.L.; Soong, Y.; Champagne, K.J.; Pennline, H.; Baltrus, J.P.; Stevens, R.W., Jr.; Khatri, R.; Chuang, S.S.C.; Filburn, T. Improved immobilized carbon dioxide capture sorbents. Fuel Proc. Technol. 2005, 86, 1449–1455. [Google Scholar] [CrossRef]
- Zheng, F.; Tran, D.N.; Busche, B.J.; Fryxell, G.E.; Addleman, R.S.; Zemanian, T.S.; Aardahl, C.L. Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Ind. Eng. Chem. Res. 2005, 44, 3099–3105. [Google Scholar] [CrossRef]
- David, E.; Kopac, J. Devlopment of palladium/ceramic membranes for hydrogen separation. Int. J. Hydrogen Energy 2011, 36, 4498–4506. [Google Scholar] [CrossRef]
- Shi, L.; Goldbach, A.; Xu, H. High-flux H2 separation membranes from (Pd/Au)n nanolayers. Int. J. Hydrogen Energy 2011, 36, 2281–2284. [Google Scholar] [CrossRef]
- Nagata, K.; Miyamoto, M.; Watabe, T.; Fujioka, Y.; Yogo, K. Preparation of pore-fill-type palladium-porous alumina composite membrane for hydrogen separation. Chem. Lett. 2011, 40, 19–21. [Google Scholar] [CrossRef]
- Li, X.; Zhou, C.; Lin, Z.; Rocha, J.; Lito, P.F.; Santiago, A.S.; Silva, C.M. Titanosilicate AM-3 membrane: A new potential candidate for H2 separation. Microporous Mesoporous Mater. 2011, 137, 43–48. [Google Scholar] [CrossRef]
- Lin, H.; Freeman, B.D. Gas permeation and diffusion in cross-linked poly(ethylene glycol diacrylate). Macromolecules 2006, 39, 3568–3580. [Google Scholar] [CrossRef]
- Lin, H.; Van Wagner, E.; Freeman, B.D.; Toy, L.G.; Gupta, R.P. Plasticization-enhanced hydrogen purification using polymeric membranes. Science 2006, 311, 639–642. [Google Scholar] [CrossRef]
- Iqbal, Z.; Shamair, Z.; Usman, M.; Gilani, M.A.; Yasin, M.; Saqib, S.; Khan, A.L. One pot synthesis of UiO-66@IL composite for fabrication of CO2 selective mixed matrix membranes. Chemosphere 2022, 303, 135122. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, S.; Liu, B.; Zhou, R.; Xing, W. Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture. Sep. Purif. Technol. 2022, 293, 121122. [Google Scholar] [CrossRef]
- Wang, B.; Huang, W.; Zhu, Y.; Zhou, R.; Xing, W. Ultra-permeable high-selective SAPO-34 membranes for efficient CO2 capture. J. Membr. Sci. 2022, 650, 120420. [Google Scholar] [CrossRef]
- Gu, X.; Dong, J.; Nenoff, T.M. Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures. Ind. Eng. Chem. Res. 2005, 44, 937–944. [Google Scholar] [CrossRef]
- Sato, K.; Sugimoto, K.; Sekine, Y.; Takada, M.; Matsukata, M.; Nakane, T. Application of FAU-type zeolite membranes to vapor/gas separation under high pressure and high temperature up to 5 MPa and 180 °C. Microporous Mesoporous Mater. 2007, 101, 312–318. [Google Scholar] [CrossRef]
- Mohammadzadeh, M.; Pakdel, S.; Azamat, J.; Erfan-Niya, H.; Khataee, A. Theoretical Study of CO2/N2 Gas Mixture Separation through a High-Silica PWN-type Zeolite Membrane. Ind. Eng. Chem. Res. 2022, 61, 5593–5599. [Google Scholar] [CrossRef]
- Nishiyama, N.; Yamaguchi, M.; Katayama, T.; Hirota, Y.; Miyamoto, M.; Egashira, Y.; Ueyama, K.; Nakanishi, K.; Ohta, T.; Mizusawa, A.; et al. Hydrogen-permeable membranes composed of zeolite nano-blocks. J. Membr. Sci. 2007, 306, 349–354. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Liu, J.; Yang, W. Microwave synthesis of LTA zeolite membranes without seeding. J. Membr. Sci. 2006, 277, 230–239. [Google Scholar] [CrossRef]
- Das, N.; Kundu, D.; Chatterjee, M. The effect of intermediate layer on synthesis and gas permeation properties of NaA zeolite membrane. J. Coat. Technol. Res. 2010, 7, 383–390. [Google Scholar] [CrossRef]
- Xu, X.; Yang, W.; Liu, J.; Lin, L.; Stroh, N.; Brunner, H. Synthesis of NaA zeolite membrane on a ceramic hollow fiber. J. Membr. Sci. 2004, 229, 81–85. [Google Scholar] [CrossRef]
- Sebastián, V.; Kumakiri, I.; Bredesen, R.; Menéndez, M. Zeolite membrane for CO2 removal: Operating at high pressure. J. Membr. Sci. 2007, 292, 92–97. [Google Scholar] [CrossRef]
- Mabande, G.T.P.; Noack, M.; Avhale, A.; Kölsch, P.; Georgi, G.; Schwieger, W.; Caro, J. Permeation properties of bi-layered Al-ZSM-5/Silicalite-1 membranes. Microporous Mesoporous Mater. 2007, 98, 55–61. [Google Scholar] [CrossRef]
- Bernal, M.P.; Coronas, J.; Menéndez, M.; Santamaría, J. Separation of CO2/N2 mixtures using MFI-type zeolite membranes. AIChE J. 2004, 50, 127–135. [Google Scholar] [CrossRef]
- Piera, E.; Brenninkmeijer, C.A.M.; Santamaría, J.; Coronas, J. Separation of traces of CO from air using MFI-type zeolite membranes. J. Membr. Sci. 2002, 201, 229–232. [Google Scholar] [CrossRef]
- Poshusta, J.C.; Noble, R.D.; Falconer, J.L. Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. J. Membr. Sci. 1999, 160, 115–125. [Google Scholar] [CrossRef]
- Shin, D.W.; Hyun, S.H.; Cho, C.H.; Han, M.H. Synthesis and CO2/N2 gas permeation characteristics of ZSM-5 zeolite membranes. Microporous Mesoporous Mater. 2005, 85, 313–323. [Google Scholar] [CrossRef]
- Himeno, S.; Tomita, T.; Suzuki, K.; Nakayama, K.; Yajima, K.; Yoshida, S. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind. Eng. Chem. Res. 2007, 46, 6989–6997. [Google Scholar] [CrossRef]
- Tomita, T.; Nakayama, K.; Sakai, H. Gas separation characteristics of DDR type zeolite membrane. Microporous Mesoporous Mater. 2004, 68, 71–75. [Google Scholar] [CrossRef]
- Mirfendereski, S.M.; Mazaheri, T.; Sadrzadeh, M.; Mohammadi, T. CO2 and CH4 permeation through T-type zeolite membranes: Effect of synthesis parameters and feed pressure. Sep. Purif. Technol. 2008, 61, 317–323. [Google Scholar] [CrossRef]
- Cui, Y.; Kita, H.; Okamoto, K.-i. Preparation and gas separation performance of zeolite T membrane. J. Mater. Chem. 2004, 14, 924–932. [Google Scholar] [CrossRef]
- Li, S.; Carreon, M.A.; Zhang, Y.; Funke, H.H.; Noble, R.D.; Falconer, J.L. Scale-up of SAPO-34 membranes for CO2/CH4 separation. J. Membr. Sci. 2010, 352, 7–13. [Google Scholar] [CrossRef]
- Li, S.; Fan, C.Q. High-flux SAPO-34 membrane for CO2/N2 separation. Ind. Eng. Chem. Res. 2010, 49, 4399–4404. [Google Scholar] [CrossRef]
- Hong, M.; Li, S.; Funke, H.F.; Falconer, J.L.; Noble, R.D. Ion-exchanged SAPO-34 membranes for light gas separations. Microporous Mesoporous Mater. 2007, 106, 140–146. [Google Scholar] [CrossRef]
- Hong, M.; Li, S.; Falconer, J.L.; Noble, R.D. Hydrogen purification using a SAPO-34 membrane. J. Membr. Sci. 2008, 307, 277–283. [Google Scholar] [CrossRef]
- Li, S.; Alvarado, G.; Noble, R.D.; Falconer, J.L. Effects of impurities on CO2/CH4 separations through SAPO-34 membranes. J. Membr. Sci. 2005, 251, 59–66. [Google Scholar] [CrossRef]
- Li, S.; Martinek, J.G.; Falconer, J.L.; Noble, R.D.; Gardner, T.Q. High-pressure CO2/CH4 separation using SAPO-34 membranes. Ind. Eng. Chem. Res. 2005, 44, 3220–3228. [Google Scholar] [CrossRef]
- Li, S.; Falconer, J.L.; Noble, R.D. SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio. Microporous Mesoporous Mater. 2008, 110, 310–317. [Google Scholar] [CrossRef]
- Chew, T.L.; Yeong, Y.F.; Ho, C.D.; Ahmad, A.L. Ion-Exchanged Silicoaluminophosphate-34 Membrane for Efficient CO2/N2 Separation with Low CO2 Concentration in the Gas Mixture. Ind. Eng. Chem. Res. 2019, 58, 729–735. [Google Scholar] [CrossRef]
- Tian, Y.; Fan, L.; Wang, Z.; Qiu, S.; Zhu, G. Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO2/CH4 mixture. J. Mater. Chem. 2009, 19, 7698–7703. [Google Scholar] [CrossRef]
- Falconer, J.L.; Carreon, M.A.; Li, S.; Noble, R.D. Synthesis of zeolites and zeolite membranes using multiple structure directing agents. U.S. Patent No. 8,302,782, 2012, 18 September 2008. [Google Scholar]
- Carreon, M.A.; Li, S.; Falconer, J.L.; Noble, R.D. SAPO-34 seeds and membranes prepared using multiple structure directing agents. Adv. Mater. 2008, 20, 729–732. [Google Scholar] [CrossRef]
- Tong, L.-I.; Chang, Y.-C.; Lin, S.-H. Determining the optimal re-sampling strategy for a classification model with imbalanced data using design of experiments and response surface methodologies. Expert Syst. Appl. 2011, 38, 4222–4227. [Google Scholar] [CrossRef]
- Vicente, G.; Martínez, M.; Aracil, J. Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Biores. Technol. 2007, 98, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.-S.; Abdullah, A.Z.; Bhatia, S. Hydrogen production from carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2 catalyst: Process optimization. Int. J. Hydrogen Energy 2011, 36, 4875–4886. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, W.; Zhang, W.; Hu, Q.; Zeng, X. Optimizing the extraction of phenolic antioxidants from kudingcha made frrom Ilex kudingcha C.J. Tseng by using response surface methodology. Sep. Purif. Technol. 2011, 78, 311–320. [Google Scholar] [CrossRef]
- Low, K.L.; Tan, S.H.; Zein, S.H.S.; McPhail, D.S.; Boccaccini, A.R. Optimization of the mechanical properties of calcium phosphate/multi-walled carbon nanotubes/bovine serum albumin composites using response surface methodology. Mater. Des. 2011, 32, 3312–3319. [Google Scholar] [CrossRef]
- Switzar, L.; Giera, M.; Lingeman, H.; Irth, H.; Niessen, W.M.A. Protein digestion optimization for characterization of drug-protein adducts using response surface modeling. J. Chromatogr. A 2011, 1218, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- Chew, T.L.; Ahmad, A.L.; Bhatia, S. Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation. Chem. Eng. J. 2011, 171, 1053–1059. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Yeong, Y.F.; Abdullah, A.Z.; Ahmad, A.L.; Bhatia, S. Process optimization studies of p-xylene separation from binary xylene mixture over silicalite-1 membrane using response surface methodology. J. Membr. Sci. 2009, 341, 96–108. [Google Scholar] [CrossRef]
- Wee, S.L.; Tye, C.T.; Bhatia, S. Process optimization studies for the dehydration of alcohol-water system by inorganic membrane based pervaporation separation using design of experiments (DOE). Sep. Purif. Technol. 2010, 71, 192–199. [Google Scholar] [CrossRef]
- Hong, M.; Falconer, J.L.; Noble, R.D. Modification of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane. Ind. Eng. Chem. Res. 2005, 44, 4035–4041. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Yin, X.; Zhu, G.; Wang, Z.; Yue, N.; Qiu, S. Zeolite P/NaX composite membrane for gas separation. Microporous Mesoporous Mater. 2007, 105, 156–162. [Google Scholar] [CrossRef]
- Mirfendereski, S.M.; Mazaheri, T. Preparation of high performance ZSM-5 zeolite membranes for CO2/H2 separation. J. Ind. Eng. Chem. 2021, 94, 240–252. [Google Scholar] [CrossRef]
- Aydani, A.; Brunetti, A.; Maghsoudi, H.; Barbieri, G. CO2 separation from binary mixtures of CH4, N2, and H2 by using SSZ-13 zeolite membrane. Sep. Purif. Technol. 2021, 256, 117796. [Google Scholar] [CrossRef]
- Zito, P.F.; Brunetti, A.; Drioli, E.; Barbieri, G. CO2 Separation via a DDR Membrane: Mutual Influence of Mixed Gas Permeation. Ind. Eng. Chem. Res. 2020, 59, 7054–7060. [Google Scholar] [CrossRef]
- Xu, C.; Wei, W.; He, Y. Enhanced hydrogen separation performance of Linde Type-A zeolite molecular sieving membrane by cesium ion exchange. Mater. Lett. 2022, 324, 132680. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Wang, B.; Zi, W.; Ji, Q.; Li, Y.; Zhang, X.; Wang, Y.; Ding, Y.; Liu, J.; et al. Ultrafast synthesis of discrete submicron AlPO4-LTA molecular sieve crystals and their application in molecular sieve membrane. Microporous Mesoporous Mater. 2022, 334, 111771. [Google Scholar] [CrossRef]
Variable (Unit) | Level and Range | ||
---|---|---|---|
−1 | 0 | +1 | |
CO2 % in the feed (%) | 5.0 | 27.5 | 50.0 |
Pressure difference (kPa) | 100 | 300 | 500 |
Temperature (°C) | 30 | 105 | 180 |
Run | Variable | Response | |||
---|---|---|---|---|---|
A | B | C | CO2 Permeance (×10−7 mol/m2 s Pa) | CO2/H2 Separation Selectivity | |
Temperature (°C) | Pressure Difference (kPa) | CO2 % in the Feed | |||
1 | 30 | 100 | 5 | 19.23 | 12.2 |
2 | 180 | 100 | 5 | 6.15 | 3.1 |
3 | 30 | 500 | 5 | 6.08 | 5.1 |
4 | 180 | 500 | 5 | 6.51 | 4.0 |
5 | 30 | 100 | 50 | 3.85 | 6.6 |
6 | 180 | 100 | 50 | 2.11 | 1.8 |
7 | 30 | 500 | 50 | 2.39 | 5.0 |
8 | 180 | 500 | 50 | 1.96 | 2.3 |
9 | 30 | 300 | 27.5 | 3.74 | 5.3 |
10 | 180 | 300 | 27.5 | 2.71 | 2.4 |
11 | 105 | 100 | 27.5 | 4.17 | 3.0 |
12 | 105 | 500 | 27.5 | 3.21 | 3.1 |
13 | 105 | 300 | 5 | 6.98 | 4.4 |
14 | 105 | 300 | 50 | 2.36 | 3.0 |
Repeated Runs | |||||
15 | 105 | 300 | 27.5 | 3.32 | 3.0 |
16 | 105 | 300 | 27.5 | 3.30 | 3.1 |
17 | 105 | 300 | 27.5 | 3.31 | 3.1 |
18 | 105 | 300 | 27.5 | 3.33 | 3.1 |
19 | 105 | 300 | 27.5 | 3.31 | 3.0 |
20 | 105 | 300 | 27.5 | 3.31 | 3.0 |
Mean | 3.31 | 3.05 | |||
Standard Deviation | 0.01 | 0.05 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | Prob > F |
---|---|---|---|---|---|
Model | 0.260 | 9 | 0.029 | 29,876.61 | <0.0001 |
A | 0.026 | 1 | 0.026 | 26,945.27 | <0.0001 |
B | 0.014 | 1 | 0.014 | 14,341.69 | <0.0001 |
C | 0.200 | 1 | 0.200 | 20.81 × 10−6 | <0.0001 |
A2 | 7.589 × 10−4 | 1 | 7.589 × 10−4 | 794.40 | <0.0001 |
B2 | 1.847 × 10−3 | 1 | 1.847 × 10−3 | 1932.97 | <0.0001 |
C2 | 8.992 × 10−4 | 1 | 8.992 × 10−4 | 941.26 | <0.0001 |
AB | 7.434 × 10−3 | 1 | 7.434 × 10−3 | 7781.67 | <0.0001 |
AC | 5.317 × 10−3 | 1 | 5.317 × 10−3 | 5566.44 | <0.0001 |
BC | 1.046 × 10−3 | 1 | 1.046 × 10−3 | 1094.58 | <0.0001 |
Residual | 9.553 × 10−6 | 10 | 9.553 × 10−7 | - | - |
Lack of Fit | 5.140 × 10−6 | 5 | 1.028 × 10−6 | 1.16 | 0.4357 |
Pure Error | 4.413 × 10−6 | 5 | 8.826 × 10−7 | - | - |
Cor Total | 0.260 | 19 | - | - | - |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | Prob > F |
---|---|---|---|---|---|
Model | 0.220 | 9 | 0.024 | 391.84 | <0.0001 |
A | 0.140 | 1 | 0.140 | 2209.94 | <0.0001 |
B | 3.112 × 10−4 | 1 | 3.112 × 10−4 | 5.03 | 0.0488 |
C | 0.036 | 1 | 0.036 | 586.84 | <0.0001 |
A2 | 1.156 × 10−3 | 1 | 1.156 × 10−3 | 18.68 | 0.0015 |
B2 | 2.755 × 10−4 | 1 | 2.755 × 10−4 | 4.45 | 0.0610 |
C2 | 4.118 × 10−3 | 1 | 4.118 × 10−3 | 66.57 | <0.0001 |
AB | 0.017 | 1 | 0.017 | 269.22 | <0.0001 |
AC | 0.015 | 1 | 0.015 | 243.05 | <0.0001 |
BC | 1.851 × 10−3 | 1 | 1.851 × 10−3 | 29.93 | 0.0003 |
Residual | 6.186 × 10−4 | 10 | 6.186 × 10−5 | - | - |
Lack of Fit | 5.036 × 10−4 | 5 | 1.007 × 10−4 | 4.39 | 0.0655 |
Pure Error | 1.150 × 10−4 | 5 | 2.300 × 10−5 | - | - |
Cor Total | 0.220 | 19 | - | - | - |
Name | Goal | Lower Limit | Upper Limit | |
---|---|---|---|---|
Variable | Temperature, °C | Within range | 30 | 100 |
Pressure Difference, kPa | Within range | 100 | 500 | |
CO2 % in the Feed | Within range | 5 | 50 | |
Response | 1/(CO2 Permeance), (×10−7 mol/m2 s Pa)−1 | Minimum | 0.05 | 0.51 |
1/(CO2/H2 Separation Selectivity) | Minimum | 0.08 | 0.56 |
Solu-tion | Temperature, °C | Pressure Difference, kPa | CO2 % in the Feed | 1/(CO2 Permeance), (×10−7 mol/m2 s Pa)−1 | 1/(CO2/H2 Separation Selectivity) | Total Desirability |
---|---|---|---|---|---|---|
1 | 30.00 | 100.00 | 5.00 | 0.052 | 0.086 | 0.996 |
2 | 30.00 | 100.00 | 5.35 | 0.056 | 0.087 | 0.990 |
3 | 30.01 | 107.02 | 5.00 | 0.056 | 0.087 | 0.990 |
4 | 30.07 | 114.32 | 5.00 | 0.060 | 0.088 | 0.985 |
5 | 30.00 | 102.66 | 6.03 | 0.060 | 0.091 | 0.982 |
6 | 31.91 | 100.00 | 5.93 | 0.059 | 0.094 | 0.980 |
7 | 40.46 | 100.00 | 5.00 | 0.056 | 0.107 | 0.969 |
Run | CO2 Permeance (×10−7 mol/m2 s Pa) | ΔError (%) | CO2/H2 Separation Selectivity | ΔError (%) | ||
---|---|---|---|---|---|---|
Experimental | Predicted (Design of Experiments) | Experimental | Predicted (Design of Experiments) | |||
1 | 19.11 | 19.23 | 0.62 | 12.1 | 11.6 | 4.13 |
2 | 18.99 | 19.23 | 1.25 | 11.9 | 11.6 | 2.52 |
3 | 19.01 | 19.23 | 1.14 | 12.2 | 11.6 | 4.92 |
4 | 19.52 | 19.23 | 1.51 | 12.2 | 11.6 | 4.92 |
5 | 18.70 | 19.23 | 2.76 | 11.8 | 11.6 | 1.69 |
Mean Error | 1.46 | 3.64 | ||||
Standard Deviation | 0.71 | 1.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, T.Y.S.; Viriya, V.; Chew, T.L.; Yeong, Y.F.; Ahmad, A.L.; Ho, C.-D.; Jawad, Z.A. Optimization of CO2/H2 Separation over Ba-SAPO-34 Zeolite Membrane Synthesized by Microwave Heating. Membranes 2022, 12, 850. https://doi.org/10.3390/membranes12090850
Ng TYS, Viriya V, Chew TL, Yeong YF, Ahmad AL, Ho C-D, Jawad ZA. Optimization of CO2/H2 Separation over Ba-SAPO-34 Zeolite Membrane Synthesized by Microwave Heating. Membranes. 2022; 12(9):850. https://doi.org/10.3390/membranes12090850
Chicago/Turabian StyleNg, Tiffany Yit Siew, Vinosha Viriya, Thiam Leng Chew, Yin Fong Yeong, Abdul Latif Ahmad, Chii-Dong Ho, and Zeinab Abbas Jawad. 2022. "Optimization of CO2/H2 Separation over Ba-SAPO-34 Zeolite Membrane Synthesized by Microwave Heating" Membranes 12, no. 9: 850. https://doi.org/10.3390/membranes12090850
APA StyleNg, T. Y. S., Viriya, V., Chew, T. L., Yeong, Y. F., Ahmad, A. L., Ho, C.-D., & Jawad, Z. A. (2022). Optimization of CO2/H2 Separation over Ba-SAPO-34 Zeolite Membrane Synthesized by Microwave Heating. Membranes, 12(9), 850. https://doi.org/10.3390/membranes12090850