Evaluation of Membrane Fouling Control for Brackish Water Treatment Using a Modified Polyamide Composite Nanofiltration Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PCMs and MPCMs
2.3. Nanofiltration Experiments
2.4. Membrane Fouling Models
2.5. Membrane Cleaning Experiments
2.6. Characterizations of Membrane and Water Quality
3. Results and Discussion
3.1. Preparation and Selection of the MPCMs
3.1.1. CA, ZP, and CAG Density
3.1.2. Pure Water Permeance and Desalination Performance
3.2. Influence of Operating Conditions on the Nanofiltration of Brackish Water by MPCM2
3.2.1. Influence of TMP on Nanofiltration Performance
Permeance Decline Behavior
Solute Retention
3.2.2. Influence of Temperature on Nanofiltration Performance
Permeance Decline Behavior
Solute Retention
3.2.3. Influence of Crossflow Velocity on Nanofiltration Performance
Permeance Decline Behavior
Solute Retention
3.3. Nanofiltration Performance and Membrane Fouling Analysis at Optimal Conditions
3.3.1. Nanofiltration Performance
3.3.2. Modeling of Membrane Fouling
3.3.3. XPS Analysis
3.4. Determination of Cleaning Procedures for MPCM2 Fouling
3.4.1. Determination of Cleaning Procedure
3.4.2. Influence of Membrane Cleaning on MPCM2 Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nanosci. Technol. 2009, 337–346. [Google Scholar] [CrossRef]
- Shao, S.; Yang, Z.; Yang, L.; Zhang, X.; Geng, Y. Synergetic conservation of water and energy in China’s industrial sector: From the perspectives of output and substitution elasticities. J. Environ. Manag. 2020, 259, 110045. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Tao, W.; Shang, Y.; Zhao, X. Spatiotemporal characteristics and influencing factors of China’s urban water resource utilization efficiency from the perspective of sustainable development. J. Clean. Prod. 2022, 338, 130649. [Google Scholar] [CrossRef]
- He, Y.; Wang, Z. Water-land resource carrying capacity in China: Changing trends, main driving forces, and implications. J. Clean. Prod. 2021, 331, 130003. [Google Scholar] [CrossRef]
- Han, X.; Zhao, Y.; Gao, X.; Jiang, S.; Lin, L.; An, T. Virtual water output intensifies the water scarcity in Northwest China: Current situation, problem analysis and countermeasures. Sci. Total. Environ. 2020, 765, 144276. [Google Scholar] [CrossRef]
- Bao, C.; Zou, J. Exploring the Coupling and Decoupling Relationships between Urbanization Quality and Water Resources Constraint Intensity: Spatiotemporal Analysis for Northwest China. Sustainability 2017, 9, 1960. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Li, Z.; Yan, Z.; Wei, Z.; Xiao, Y.; Chen, S.; Shangguan, H.; Lin, H.; Chang, H. Operating parameters optimization of combined UF/NF dual-membrane process for brackish water treatment and its application performance in municipal drinking water treatment plant. J. Water Process Eng. 2020, 38, 101547. [Google Scholar] [CrossRef]
- Du, J.R.; Zhang, X.; Feng, X.; Wu, Y.; Cheng, F.; Ali, M.E. Desalination of high salinity brackish water by an NF-RO hybrid system. Desalination 2020, 491, 114445. [Google Scholar] [CrossRef]
- Lesimple, A.; Ahmed, F.E.; Hilal, N. Remineralization of desalinated water: Methods and environmental impact. Desalination 2020, 496, 114692. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Du, F.; Han, J.; Hao, G.; Li, L.; Ma, Q. Geothermal direct contact membrane distillation system for purifying brackish water. Desalination 2020, 500, 114887. [Google Scholar] [CrossRef]
- Stevens, C.H. Assessment of desalination treatment processes for future water supplies, in: International Conference on Nuclear Engineering. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2003. [Google Scholar]
- Zapata-Sierra, A.; Cascajares, M.; Alcayde, A.; Manzano-Agugliaro, F. Worldwide research trends on desalination. Desalination 2021, 519, 115305. [Google Scholar] [CrossRef]
- Tan, N.P.B.; Ucab, P.M.L.; Dadol, G.C.; Jabile, L.M.; Talili, I.N.; Cabaraban, M.T.I. A review of desalination technologies and its impact in the Philippines. Desalination 2022, 534, 115805. [Google Scholar] [CrossRef]
- Sanmartino, J.A.; Khayet, M.; García-Payo, M.C. Chapter 4, Desalination by Membrane Distillation. In Emerging Membrane Technology for Sustainable Water Treatment; Hankins, N.P., Singh, R., Eds.; Elsevier: Boston, MA, USA, 2016; pp. 77–109. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Xu, J.; Yuan, Q.; Deng, B.; Chen, C.; Li, Z. Experiments and insights of desalination by a freezing/thawing method at low subcooling. Chin. J. Chem. Eng. 2020, 28, 3011–3017. [Google Scholar] [CrossRef]
- El Kadi, K.; Adeyemi, I.; Janajreh, I. Application of directional freezing for seawater desalination: Parametric analysis using experimental and computational methods. Desalination 2021, 520, 115339. [Google Scholar] [CrossRef]
- Xin, Y.; Zhou, Z.; Ming, Q.; Sun, D.; Han, J.; Ye, X.; Dai, S.; Jiang, L.-M.; Zhao, X.; An, Y. A two-stage desalination process for zero liquid discharge of flue gas desulfurization wastewater by chloride precipitation. J. Hazard. Mater. 2020, 397, 122744. [Google Scholar] [CrossRef]
- Rajput, A.; Sharma, J.; Raj, S.K.; Kulshrestha, V. Dehydrofluorinated poly(vinylidene fluoride-co-hexafluoropropylene) based crosslinked cation exchange membrane for brackish water desalination via electrodialysis. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 630, 127576. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Haddad, A.Z.; Kumar, A.; Wang, S.-W. Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus. Water Res. 2020, 183, 116064. [Google Scholar] [CrossRef]
- Hosseinipour, E.; Park, K.; Burlace, L.; Naughton, T.; Davies, P.A. A free-piston batch reverse osmosis (RO) system for brackish water desalination: Experimental study and model validation. Desalination 2022, 527, 115524. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Fountoulis, G.; Gekas, V. Nanofiltration of brackish groundwater by using a polypiperazine membrane. Desalination 2011, 286, 277–284. [Google Scholar] [CrossRef]
- Ding, J.; Liang, H.; Zhu, X.; Xu, D.; Luo, X.; Wang, Z.; Bai, L. Surface modification of nanofiltration membranes with zwitterions to enhance antifouling properties during brackish water treatment: A new concept of a “buffer layer”. J. Membr. Sci. 2021, 637, 119651. [Google Scholar] [CrossRef]
- Skuse, C.; Gallego-Schmid, A.; Azapagic, A.; Gorgojo, P. Can emerging membrane-based desalination technologies replace reverse osmosis? Desalination 2021, 500, 114844. [Google Scholar] [CrossRef]
- Srivastava, A.; Singh, R.; Rajput, V.D.; Minkina, T.; Agarwal, S.; Garg, M.C. A systematic approach towards optimization of brackish groundwater treatment using nanofiltration (NF) and reverse osmosis (RO) hybrid membrane filtration system. Chemosphere 2022, 303, 135230. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Qin, Y.; Ye, Y.; Chen, X.; Wang, K.; Zhang, Y.; Figoli, A.; Drioli, E. Finely tailored pore structure of polyamide nanofiltration membranes for highly-efficient application in water treatment. Chem. Eng. J. 2020, 417, 127976. [Google Scholar] [CrossRef]
- Sharma, V.; Borkute, G.; Gumfekar, S.P. Biomimetic nanofiltration membranes: Critical review of materials, structures, and applications to water purification. Chem. Eng. J. 2021, 433, 133823. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, F.; Qin, S.; Huang, J.; Yang, X.; Wang, W.; Li, Y.; Wu, C.; Shao, L. Deprotonated tannic acid regulating pyrrole polymerization to enhance nanofiltration performance for molecular separations under both aqueous and organic solvent environments. Sep. Purif. Technol. 2022, 298, 121647. [Google Scholar] [CrossRef]
- Yadav, D.; Karki, S.; Ingole, P.G. Current advances and opportunities in the development of nanofiltration (NF) membranes in the area of wastewater treatment, water desalination, biotechnological and pharmaceutical applications. J. Environ. Chem. Eng. 2022, 10, 108109. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, D.; Shen, Y.; Yin, W.; Gao, X.; Shi, W. Treatment of alkali/surfactant/polymer flooding oilfield wastewater with polytetrafluoroethylene microfiltration membrane: Performance and membrane fouling. J. Environ. Chem. Eng. 2020, 8, 104462. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X. Membrane cleaning in membrane bioreactors: A review. J. Membr. Sci. 2014, 468, 276–307. [Google Scholar] [CrossRef]
- Zhang, B.; Mao, X.; Tang, X.; Tang, H.; Shen, Y.; Shi, W. Effect of modified microbial flocculant on membrane fouling alleviation in a hybrid aerobic granular sludge membrane system for wastewater reuse. Sep. Purif. Technol. 2022, 290, 120819. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Tang, C.Y. Fouling of Nanofiltration, Reverse Osmosis, and Ultrafiltration Membranes by Protein Mixtures: The Role of Inter-Foulant-Species Interaction. Environ. Sci. Technol. 2011, 45, 6373–6379. [Google Scholar] [CrossRef]
- Tang, C.Y.; Chong, T.; Fane, A.G. Colloidal interactions and fouling of NF and RO membranes: A review. Adv. Colloid Interface Sci. 2011, 164, 126–143. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Mirbagheri, S.A. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater. Bioresour. Technol. 2018, 258, 318–334. [Google Scholar] [CrossRef]
- Liao, Y.; Bokhary, A.; Maleki, E.; Liao, B. A review of membrane fouling and its control in algal-related membrane processes. Bioresour. Technol. 2018, 264, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-P.; Wang, H.-L.; Qi, Y.-H.; Chao, Z.-L.; Tian, L.; Yuan, W.; Dai, L.; Lv, W.-J. Reducing fouling of an industrial multi-stage nanofiltration membrane based on process control: A novel shutdown system. J. Membr. Sci. 2021, 644, 120141. [Google Scholar] [CrossRef]
- Li, S.; Meng, H.; Wang, H.; Vrouwenvelder, J.S.; Li, Z. A sacrificial protective layer as fouling control strategy for nanofiltration in water treatment. Water Res. 2022, 219, 118554. [Google Scholar] [CrossRef]
- Serbanescu, O.S.; Voicu, S.I.; Thakur, V.K. Polysulfone functionalized membranes: Properties and challenges. Mater. Today Chem. 2020, 17, 100302. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Han, X.; Liu, Y.; Wang, C.; Yan, F.; Wang, J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J. Membr. Sci. 2021, 640, 119765. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; Liu, J.; Wei, Y.; Chen, M. Advanced treatment of municipal wastewater by nanofiltration: Operational optimization and membrane fouling analysis. J. Environ. Sci. 2016, 43, 106–117. [Google Scholar] [CrossRef]
- Song, W.; Li, N.; Ding, S.; Wang, X.; Li, H.; Zhang, Y.; Feng, X.; Lu, J.; Ding, J. Nanofiltration desalination of reverse osmosis concentrate pretreated by advanced oxidation with ultrafiltration: Response surface optimization and exploration of membrane fouling. J. Environ. Chem. Eng. 2021, 9, 106340. [Google Scholar] [CrossRef]
- Méndez, A.; Gómez, A.; Paz-Ferreiro, J.; Gascó, G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 2012, 89, 1354–1359. [Google Scholar] [CrossRef]
- Zhang, B.; Mao, X.; Tang, X.; Tang, H.; Shen, Y.; Shi, W. Pre-coagulation for membrane fouling mitigation in an aerobic granular sludge membrane bioreactor: A comparative study of modified microbial and organic flocculants. J. Membr. Sci. 2021, 644, 120129. [Google Scholar] [CrossRef]
- Tiraferri, A.; Elimelech, M. Direct quantification of negatively charged functional groups on membrane surfaces. J. Membr. Sci. 2012, 389, 499–508. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, H.; Tang, S.; Feng, H.; Zhang, H.; Chen, K.; Li, P.; Niu, Q.J. Nanofiltration membranes with enhanced performance by constructing an interlayer integrated with dextran nanoparticles and polyethyleneimine coating. J. Membr. Sci. 2022, 654, 120537. [Google Scholar] [CrossRef]
- Liu, H.; Tao, X.; Zhu, H.; Tang, Z.; Xu, S.; Li, B.; Song, Z.; Pan, L.; Zhang, Y.; Duan, J. Effect of operation mode on membrane fouling from traditional Chinese medicine water extracts. J. Water Process. Eng. 2022, 48, 102943. [Google Scholar] [CrossRef]
- Qi, T.; Chen, X.; Shi, W.; Wang, T.; Qiu, M.; Da, X.; Wen, J.; Fan, Y. Fouling behavior of nanoporous ceramic membranes in the filtration of oligosaccharides at different temperatures. Sep. Purif. Technol. 2021, 278, 119589. [Google Scholar] [CrossRef]
- Susanto, H.; Ulbricht, M. Influence of ultrafiltration membrane characteristics on adsorptive fouling with dextrans. J. Membr. Sci. 2005, 266, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Xiang, H.; Min, X.; Tang, C.-J.; Sillanpää, M.; Zhao, F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process. Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Ben Amar, N.; Saidani, H.; Deratani, A.; Palmeri, J. Effect of Temperature on the Transport of Water and Neutral Solutes across Nanofiltration Membranes. Langmuir 2007, 23, 2937–2952. [Google Scholar] [CrossRef]
- Nilsson, M.; Trägårdh, G.; Östergren, K. The influence of pH, salt and temperature on nanofiltration performance. J. Membr. Sci. 2008, 312, 97–106. [Google Scholar] [CrossRef]
- Cai, W.; Gao, Z.; Yu, S.; Lv, M.; Shi, Y.; Wang, J. New insights into membrane fouling formation during ultrafiltration of organic wastewater with high salinity. J. Membr. Sci. 2021, 635, 119446. [Google Scholar] [CrossRef]
- Zhang, M.; Hong, H.; Lin, H.; Shen, L.; Yu, H.; Ma, G.; Chen, J.; Liao, B.-Q. Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations. Water Res. 2018, 129, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tang, H.; Shen, Y.; Liu, G.; Shi, W. Comparative analysis of membrane fouling mechanisms induced by colloidal polymer: Effects of sodium and calcium ions. J. Colloid Interface Sci. 2021, 608, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Elimelech, M. Organic Fouling and Chemical Cleaning of Nanofiltration Membranes: Measurements and Mechanisms. Environ. Sci. Technol. 2004, 38, 4683–4693. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zeng, B.; Yu, G.; Teng, J.; Zhang, H.; Shen, L.; Yang, L.; Lin, H. Mechanistic insights into Ca-alginate gel-associated membrane fouling affected by ethylene diamine tetraacetic acid (EDTA). Sci. Total. Environ. 2022, 842, 156912. [Google Scholar] [CrossRef]
Element | Contents (%) | Element | Contents (%) | ||
---|---|---|---|---|---|
Virgin MPCM2 | Fouled MPCM2 | Virgin MPCM2 | Fouled MPCM2 | ||
C | 67.22 | 68.43 | Cl | 0.00 | 0.02 |
N | 10.57 | 9.16 | Na | 0.00 | 0.04 |
O | 12.62 | 11.64 | K | 0.00 | 0.00 |
S | 9.59 | 9.86 | Mg | 0.00 | 0.26 |
Ca | 0.00 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Liu, C.; Feng, B.; Hao, Y. Evaluation of Membrane Fouling Control for Brackish Water Treatment Using a Modified Polyamide Composite Nanofiltration Membrane. Membranes 2023, 13, 38. https://doi.org/10.3390/membranes13010038
Guo X, Liu C, Feng B, Hao Y. Evaluation of Membrane Fouling Control for Brackish Water Treatment Using a Modified Polyamide Composite Nanofiltration Membrane. Membranes. 2023; 13(1):38. https://doi.org/10.3390/membranes13010038
Chicago/Turabian StyleGuo, Xuebai, Cuixia Liu, Bin Feng, and Yuanfeng Hao. 2023. "Evaluation of Membrane Fouling Control for Brackish Water Treatment Using a Modified Polyamide Composite Nanofiltration Membrane" Membranes 13, no. 1: 38. https://doi.org/10.3390/membranes13010038
APA StyleGuo, X., Liu, C., Feng, B., & Hao, Y. (2023). Evaluation of Membrane Fouling Control for Brackish Water Treatment Using a Modified Polyamide Composite Nanofiltration Membrane. Membranes, 13(1), 38. https://doi.org/10.3390/membranes13010038