Novel PVDF-PEG-CaCO3 Membranes to Achieve the Objectives of the Water Circular Economy by Removing Pharmaceuticals from the Aquatic Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membranes and Their Modification
2.2. Analysis of Physicochemical Properties
2.3. Testing of Process Properties
3. Results and Discussion
3.1. Water Permeability Tests
3.2. Goniometric Test
3.3. SEM Analysis
3.4. Porosimetry Analysis
3.5. Process Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geisendorf, S.; Pietrulla, F. The circular economy and circular economic concepts-a literature analysis and Redefinition. Thunderbird Int. Bus. Rev. 2017, 60, 771–782. [Google Scholar] [CrossRef]
- Camacho-Otero, J.; Boks, C.; Pettersen, I.N. Consumption in the circular economy: A literature review. Sustainability 2018, 10, 2758. [Google Scholar] [CrossRef] [Green Version]
- Stahel, W.R. The circular economy. Nature 2016, 531, 435–438. [Google Scholar] [CrossRef] [Green Version]
- Payne, J.; McKeown, P.; Jones, M.D. A circular economy approach to plastic waste. Polym. Degrad. Stab. 2019, 165, 170–181. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Li, J.; Koh, L.; Ogunseitan, O.A. Circular economy and electronic waste. Nat. Electron. 2019, 2, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Giurco, D.; Littleboy, A.; Boyle, T.; Fyfe, J.; White, S. Circular economy: Questions for responsible minerals, additive manufacturing and recycling of metals. Resources 2014, 3, 432–453. [Google Scholar] [CrossRef] [Green Version]
- Smol, M.; Adam, C.; Krueger, O. Use of nutrients from wastewater for the fertilizer industry-approaches towards the implementation of the circular economy (CE). Desalin. Water Treat. 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Ang, K.L.; Saw, E.T.; He, W.; Dong, X.; Ramakrishna, S. Sustainability framework for pharmaceutical manufacturing (PM): A review of research landscape and implementation barriers for circular economy transition. J. Clean. Prod. 2021, 280, 124264. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef] [PubMed]
- Smol, M.; Adam, C.; Preisner, M. Circular economy model framework in the European water and wastewater sector. J. Mater. Cycles Waste Manag. 2020, 22, 682–697. [Google Scholar] [CrossRef]
- Smol, M.; Marcinek, P.; Koda, E. Drivers and barriers for a circular economy (CE) implementation in Poland—A case study of raw materials recovery sector. Energies 2021, 14, 2219. [Google Scholar] [CrossRef]
- Nika, C.E.; Vasilaki, V.; Expósito, A.; Katsou, E. Water cycle and circular economy: Developing a circularity assessment framework for complex water systems. Water Res. 2020, 187, 116423. [Google Scholar] [CrossRef]
- Sauvé, S.; Lamontagne, S.; Dupras, J.; Stahel, W. Circular economy of water: Tackling quantity, quality and footprint of water. Environ. Dev. 2021, 39, 100651. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Zouboulis, A.I. Removal of uranium from contaminated drinking water: A mini review of available treatment methods. Desalin. Water Treat. 2013, 51, 2915–2925. [Google Scholar] [CrossRef]
- Hasan, H.A.; Muhammad, M.H. A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. J. Water Process Eng. 2020, 33, 101035. [Google Scholar] [CrossRef]
- Kogut, I.; Armbruster, F.; Polak, D.; Kaur, S.; Hussy, S.; Thiem, T.; Gerhardts, A.; Szwast, M. Antibacterial, Antifungal, and Antibiotic Adsorption Properties of Graphene-Modified Nonwoven Materials for Application in Wastewater Treatment Plants. Processes 2022, 10, 2051. [Google Scholar] [CrossRef]
- Espindola, J.C.; Caianelo, M.; Scaccia, N.; Rodrigues-Silva, C.; Guimaraes, J.R.; Vilar, V.J. Trace organic contaminants removal from municipal wastewater using the FluHelik reactor: From laboratory-scale to pre-pilot scale. J. Environ. Chem. Eng. 2021, 9, 105060. [Google Scholar] [CrossRef]
- Espíndola, J.C.; Vilar, V.J. Innovative light-driven chemical/catalytic reactors towards contaminants of emerging concern mitigation: A review. Chem. Eng. J. 2020, 394, 124865. [Google Scholar] [CrossRef]
- Shen, Y.; de Vidales, M.J.M.; Espíndola, J.C.; Gómez-Herrero, A.; Dos santos-García, A.J. Paracetamol degradation by photo-assisted activation of peroxymonosulfate over ZnxNi1−xFe2O4@ BiOBr heterojunctions. J. Environ. Chem. Eng. 2021, 9, 106797. [Google Scholar] [CrossRef]
- Bodzek, M. Membrane separation techniques: Removal of inorganic and organic admixtures and impurities from water environment. Arch. Environ. Prot. 2019, 45, 4–19. [Google Scholar]
- Bodzek, M.; Konieczny, K.; Kwiecińska, A. Application of membrane processes in drinking water treatment–state of art. Desalin. Water Treat. 2011, 35, 164–184. [Google Scholar] [CrossRef]
- Kogut, I.; Szwast, M.; Hussy, S.; Polak, D.; Gerhardts, A.; Piątkiewicz, W. Evaluation of wastewater reuse in commercial laundries: A pilot field study. Desalin. Water Treat. 2021, 214, 39–48. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Lejon, L.; Vandecasteele, C. Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes. Environ. Sci. Technol. 2003, 37, 3733–3738. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, J.; Cerneaux, S.; Kujawski, W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J. Membr. Sci. 2015, 474, 11–19. [Google Scholar] [CrossRef]
- Kujawski, W. Application of pervaporation and vapor permeation in environmental protection. Pol. J. Environ. Stud. 2000, 9, 13–26. [Google Scholar]
- Tavares, T.; Leon, F.; Vaswani, J.; Peñate, B.; Ramos-Martín, A. Study for Recycling Water Treatment Membranes and Compnents towards a Circular Economy—Case of Macaronesia Area. Membranes 2022, 12, 970. [Google Scholar] [CrossRef]
- Cosenza, A.; Gulhan, H.; Maida, C.M.; Mannina, G. Nutrient recovery from wastewater treatment by ultrafiltration membrane for water reuse in view of a circular economy perspective. Bioresour. Technol. 2022, 363, 127929. [Google Scholar] [CrossRef]
- Chabanon, E.; Mangin, D.; Charcosset, C. Membranes and crystallization processes: State of the art and prospects. J. Membr. Sci. 2016, 509, 57–67. [Google Scholar] [CrossRef]
- Xiong, B.; Richard, T.L.; Kumar, M. Integrated acidogenic digestion and carboxylic acid separation by nanofiltration membranes for the lignocellulosic carboxylate platform. J. Membr. Sci. 2015, 489, 275–283. [Google Scholar] [CrossRef]
- Woskowicz, E.; Łożyńska, M.; Życki, M.; Kowalik-Klimczak, A. Hybrid processes combining microfiltration and adsorption/ion exchange for dairy wastewater treatment. J. Mach. Constr. Maint. Probl. Eksploat. 2019, 4, 75–82. [Google Scholar]
- Polak, D.; Zielińska, I.; Szwast, M.; Kogut, I.; Małolepszy, A. Modification of ceramic membranes with carbon compounds for pharmaceutical substances removal from water in a filtration—Adsorption system. Membranes 2021, 11, 481. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, I.; Polak, D.; Szwast, M. Analysis of the adsorption of selected pharmaceuticals on a composite material PEBAX/GO. J. Water Process Eng. 2021, 44, 102272. [Google Scholar] [CrossRef]
- Chander, V.; Sharma, B.; Negi, V.; Aswal, R.S.; Singh, P.; Singh, R.; Dobhal, R. Pharmaceutical compounds in drinking water. J. Xenobiot. 2016, 6, 5774. [Google Scholar] [CrossRef]
- Kędra-Królik, K.; Gierycz, P.; Bucki, J.J. Controlled precipitation of CaCO3 sub-micro crystals of well-defined structure in a multiphase system. Arch. Metall. Mater. 2006, 51, 635–639. [Google Scholar]
- Fadaei, A.; Salimi, A.; Mirzataheri, M. Structural elucidation of morphology and performance of the PVDF/PEG membrane. J. Polym. Res. 2014, 21, 545. [Google Scholar] [CrossRef]
- Zuo, D.Y.; Xu, Y.Y.; Xu, W.L.; Zou, H.T. The influence of PEG molecular weight on morphologies and properties of PVDF asymmetric membranes. Chin. J. Polym. Sci. 2008, 26, 405–414. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Y.; Zhou, B.; Guo, Y.; Gao, W.; Ma, Y.; Guan, S.; Wang, L.; Wang, Z. Hydrophilic CaCO3 nanoparticles designed for poly(ethylene terephthalate). Powder Technol. 2010, 204, 21–26. [Google Scholar] [CrossRef]
- Miao, A.; Wei, M.; Xu, F.; Wang, Y. Influence of membrane hydrophilicity on water permeability: An experimental study bridging simulations. J. Membr. Sci. 2020, 604, 118087. [Google Scholar] [CrossRef]
- Gekas, V.; Persson, K.M.; Wahlgren, M.; Sivik, B. Contact angles of ultrafiltration membranes and their possible correlation to membrane performance. J. Membr. Sci. 1992, 72, 293–302. [Google Scholar] [CrossRef]
- Penabad-Peña, L.; Herrera-Morales, J.; Betancourt, M.; Nicolau, E. Cellulose acetate/P4VP-b-PEO membranes for the adsorption of electron-deficient pharmaceutical compounds. ACS Omega 2019, 4, 22456–22463. [Google Scholar] [CrossRef] [Green Version]
- Zhou, A.; Jia, R.; Wang, Y.; Sun, S.; Xin, X.; Wang, M.; Zhao, Q.; Zhu, H. Abatement of sulfadiazine in water under a modified ultrafiltration membrane (PVDF-PVP-TiO2-dopamine) filtration-photocatalysis system. Sep. Purif. Technol. 2020, 234, 116099. [Google Scholar] [CrossRef]
- Zhou, A.; Wang, Y.; Sun, S.; Xin, X.; Wang, M.; Zhao, Q.; Zhu, H.; Jia, R. Removal of sulfadiazine in a modified ultrafiltration membrane (PVDF-PVP-TiO2-FeCl3) filtration-photocatalysis system: Parameters optimizing and interferences of drinking water. Environ. Sci. Pollut. Res. 2020, 27, 45605–45617. [Google Scholar] [CrossRef] [PubMed]
Membrane Marking | PVDF | PEG | CaCO3 |
---|---|---|---|
PVDF unmodified | 0% wt. | 0% wt. | 0% wt. |
PVDF + 10% PEG | 5% wt. | 10% wt. | 0% wt. |
PVDF + 15% PEG | 5% wt. | 15% wt. | 0% wt. |
PVDF + 20% PEG | 5% wt. | 20% wt. | 0% wt. |
PVDF + 20% PEG + 5% CaCO3 | 5% wt. | 20% wt. | 5% wt. |
PVDF + 20% PEG + 10% CaCO3 | 5% wt. | 20% wt. | 10% wt. |
Membrane Marking | Contact Angle | |
---|---|---|
Internal Surface | External Surface | |
PVDF unmodified | 105.2° | 82.6° |
PVDF + 20% PEG | 96.4° | 80.2° |
PVDF + 20% PEG + 5% CaCO3 | 90.4° | 78.3° |
PVDF + 20% PEG + 10% CaCO3 | 93.0° | 71.3° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szwast, M.; Polak, D.; Arciszewska, W.; Zielińska, I. Novel PVDF-PEG-CaCO3 Membranes to Achieve the Objectives of the Water Circular Economy by Removing Pharmaceuticals from the Aquatic Environment. Membranes 2023, 13, 44. https://doi.org/10.3390/membranes13010044
Szwast M, Polak D, Arciszewska W, Zielińska I. Novel PVDF-PEG-CaCO3 Membranes to Achieve the Objectives of the Water Circular Economy by Removing Pharmaceuticals from the Aquatic Environment. Membranes. 2023; 13(1):44. https://doi.org/10.3390/membranes13010044
Chicago/Turabian StyleSzwast, Maciej, Daniel Polak, Wiktoria Arciszewska, and Izabela Zielińska. 2023. "Novel PVDF-PEG-CaCO3 Membranes to Achieve the Objectives of the Water Circular Economy by Removing Pharmaceuticals from the Aquatic Environment" Membranes 13, no. 1: 44. https://doi.org/10.3390/membranes13010044
APA StyleSzwast, M., Polak, D., Arciszewska, W., & Zielińska, I. (2023). Novel PVDF-PEG-CaCO3 Membranes to Achieve the Objectives of the Water Circular Economy by Removing Pharmaceuticals from the Aquatic Environment. Membranes, 13(1), 44. https://doi.org/10.3390/membranes13010044