Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of GO Nanosheets
2.2. Preparation of MoO2@GO Composite Membranes
2.3. Preparation of WO3@GO Nanocomposite Membranes
2.4. Characterization of Materials and Membranes
2.5. Water Permeance and Separation Efficiency of GO-Based Membranes
3. Results and Discussion
3.1. Physicochemical Characterization of Membranes
3.2. Water Permeance and Salt Rejection Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, T.; Sun, S.; Fu, G.; Hall, J.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 2020, 11, 650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, F.; Lamontagne, J.; Link, R.; Hejazi, M.; Reed, P.; Edmonds, J. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 2021, 12, 1915. [Google Scholar] [CrossRef] [PubMed]
- Armendáriz-Ontiveros, M.M.; Villegas-Peralta, Y.; Madueño-Moreno, J.; Álvarez-Sánchez, J.; Dévora-Isiordia, G.; Sánchez-Duarte, R.; Madera-Santana, T. Modification of thin film composite membrane by chitosan-silver particles to improve desalination and anti-biofouling performance. Membranes 2022, 12, 851. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, M.M.; Abulnour, A.; Tewfik, S.; Sorour, M.; Hani, H.; Shaalan, H. Reverse osmosis membrane zero liquid discharge for agriculture drainage water desalination: Technical, economic, and environmental assessment. Membranes 2022, 12, 923. [Google Scholar] [CrossRef] [PubMed]
- Rehman, F.; Memon, F.H.; Ullah, S.; Mazumder, M.J.; Al-Ahmed, A.; Khan, F.; Thebo, K.H. Recent development in laminar transition metal dichalcogenides-based membranes towards water desalination: A Review. Chem. Rec. 2022, 22, e202200107. [Google Scholar] [CrossRef] [PubMed]
- Janjhi, F.A.; Janwery, D.; Chandio, I.; Ullah, S.; Rehman, F.; Memon, A.; Hakami, J.; Khan, F.; Boczkaj, G.; Thebo, K. Recent advances in graphene oxide-Based membranes for heavy metal ions separation. ChemBioEng Rev. 2022, 9, 574–590. [Google Scholar] [CrossRef]
- Ali, A.; Rehman, F.; Khan, M.A.; Memon, F.; Soomro, F.; Iqbal, M.; Yang, J.; Thebo, K. Functionalized graphene oxide-based lamellar membranes with tunable nanochannels for ionic and molecular separation. ACS Omega 2022, 7, 32410–32417. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, X.; Thebo, K.; Cheng, H.-M.; Ren, W. Controlling reduction degree of graphene oxide membranes for improved water permeance. Bull. Sci. 2018, 63, 788–794. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, M.; Chepeleva, A.; Liamin, V.; Kuzminova, A.; Mazur, A.; Semenov, K.; Penkova, A. Novel PDMS-b-PPO membranes modified with graphene oxide for efficient pervaporation ethanol dehydration. Membranes 2022, 12, 832. [Google Scholar] [CrossRef]
- Stehle, Y.Y.; Robertson, E.; Cortez, R.; Vlassiouk, I.; Bucinell, R.; Olsson, K.; Kilby, L. Using Al3+ to tailor graphene oxide nanochannels: Impact on membrane stability and permeability. Membranes 2022, 12, 871. [Google Scholar] [CrossRef]
- Chandio, I.; Janjhi, F.; Memon, A.; Memon, S.; Ali, Z.; Thebo, K.; Pirzado, A.; Hakro, A.; Khan, W. Ultrafast ionic and molecular sieving through graphene oxide based composite membranes. Desalination 2021, 500, 114848. [Google Scholar] [CrossRef]
- Janjhi, F.A.; Chandio, I.; Memon, A.A.; Ahmed, Z.; Thebo, K.H.; Pirzado, A.A.A.; Hakro, A.A.; Iqbal, M. Functionalized graphene oxide based membranes for ultrafast molecular separation. Sep. Purif. Technol. 2021, 274, 117969. [Google Scholar] [CrossRef]
- Ali, A.; Aamir, M.; Thebo, K.; Akhtar, J. Laminar graphene oxide membranes towards selective ionic and molecular separations: Challenges and progress. Chem. Rec. 2020, 20, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ying, Y.; Peng, X.J. Graphene oxide nanosheet: An emerging star material for novel separation membranes. J. Mater. Chem. A 2014, 2, 13772–13782. [Google Scholar] [CrossRef]
- Pei, S.; Wei, Q.; Huang, K.; Cheng, H.-M.; Ren, W. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun. 2018, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47, 3715–3723. [Google Scholar] [CrossRef]
- Zhao, X.; Su, Y.; Liu, Y.; Li, Y.; Jiang, Z. Free-standing graphene oxide-palygorskite nanohybrid membrane for Oil/Water separation. ACS Appl. Mater. Interfaces 2016, 8, 8247–8256. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.-N.; Liu, D.; Nie, Y.; Li, W.; Wu, J.; Zhang, F.; Biswas, P.; Fortner, J.D. Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. J. Environ. Sci. Technol. 2015, 49, 6846–6854. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, S.; Chung, T.-S. Nanometric graphene oxide framework membranes with enhanced heavy hetal removal via nanofiltration. Environ. Sci. Technol. 2015, 49, 10235–10242. [Google Scholar] [CrossRef]
- Qin, D.; Liu, Z.; Sun, D.D.; Song, X.; Bai, H. A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater. Sci. Rep. 2015, 5, 14530. [Google Scholar] [CrossRef]
- P Sun Ma, R.; Ma, W.; Wu, J.; Wang, K.; Sasaki, T.; Zhu, H. Highly selective charge-guided ion transport through a hybrid membrane consisting of anionic graphene oxide and cationic hydroxide nanosheet superlattice units. NPG Asia Mater. 2016, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhu, Y.; He, G.; Xing, R.; Pan, F.; Jiang, Z.; Zhang, P.; Cao, X.; Wang, B. Incorporating zwitterionic graphene oxides into sodium alginate membrane for efficient water/alcohol separation. ACS Appl. Mater. Interfaces 2016, 8, 2097–2103. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, J.; Uliana, A.; Tian, M.; Zhang, Y.; Zhang, Y.; Volodin, A.; Simoens, K.; Yuan, S.; Li, J.; et al. Mussel-inspired architecture of high-flux loose nanofiltration membrane functionalized with antibacterial reduced graphene oxide–copper nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 28990–29001. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Yu, J.; Wang, Y.; Hu, Y.; Yu, X.; Zhang, G. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 2012, 22, 8525–8531. [Google Scholar] [CrossRef]
- Khatamian, M.; Khodakarampoor, N.; Oskoui, M.S.; Kazemian, N. Synthesis and characterization of RGO/zeolite composites for the removal of arsenic from contaminated water. RSC Adv. 2015, 5, 35352–35360. [Google Scholar] [CrossRef]
- Madau, L.; Schumacher, J.; Ghosh, M.; Ochedowski, O.; Meyer, J.; Lebius, H.; Ban-d, B.; Toimil-Molares, M.; Trautmann, C.; Lammertink, R.; et al. Fabrication of nanoporous graphene/polymer composite membranes. Nanoscale 2017, 9, 10487–10493. [Google Scholar] [CrossRef]
- Memon, F.H.; Rehman, F.; Lee, J.; Soomro, F.; Iqbal, M.; Khan, S.; Ali, A.; Thebo, K.; Choi, K. Transition metal dichalcogenide-based membranes for water desalination, gas separation, and energy storage. Sep. Purif. Rev. 2022, 1–15. [Google Scholar] [CrossRef]
- Mahar, I.; Memon, F.; Lee, J.-W.; Kim, K.; Ahmed, R.; Soomro, F.; Rehman, F.; Memon, A.; Thebo, K.; Choi, K. Two-dimensional transition metal carbides and nitrides (MXenes) for water purification and antibacterial applications. Membranes 2021, 11, 869. [Google Scholar] [CrossRef]
- Ali, Z.; Mehmood, M.; Ahmed, J.; Majeed, A.; Thebo, K. CVD grown defect rich-MWCNTs with anchored CoFe alloy nanoparticles for OER activity. Mater. Lett. 2020, 259, 126831. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Azizighannad, S.; Mitra, S. Stepwise reduction of graphene oxide (GO) and its effects on chemical and colloidal properties. Sci. Rep. 2018, 8, 10083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Yan, L.; Bangal, P. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J. Phys. Chem. C 2010, 114, 19885–19890. [Google Scholar] [CrossRef]
- Li, W.; Wu, W.; Li, Z. Controlling interlayer spacing of graphene oxide membranes by external Pressure Regulation. ACS Nano 2018, 12, 9309–9317. [Google Scholar] [CrossRef]
- Thebo, K.H.; Qian, X.; Zhang, Q.; Chen, L.; Cheng, H.; Ren, W. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 2018, 9, 1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 2011, 5, 7100–7107. [Google Scholar] [CrossRef]
- Gan, L.; Xu, L.; Shang, S.; Zhou, X.; Meng, L. Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceram. Int. 2016, 42, 15235–15241. [Google Scholar] [CrossRef]
- Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H.-M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245–5252. [Google Scholar] [CrossRef]
- Shi, J.; Cheng, Z.; Gao, L.; Zhang, Y.; Xu, J.; Zhao, H. Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B Chem. 2016, 230, 736–745. [Google Scholar] [CrossRef]
- Chen, Y.; Di, X.; Ma, C.; Zhu, C.; Gao, P.; Li, J.; Sun, C.; Ouyang, Q. Graphene-MoO2 hierarchical nanoarchitectures: In situ reduction synthesis and high rate cycling performance as lithium-ion battery anodes. RSC Adv. 2013, 3, 17659–17663. [Google Scholar] [CrossRef]
- Petnikota, S.; Teo, K.; Chen, L.; Sim, A.; Marka, S.; Reddy, M.; Srikanth, V.; Adams, S.; Chowdari, B. Exfoliated graphene oxide/MoO2 composites as anode materials in lithium-ion batteries: An insight into intercalation of Li and conversion mechanism of MoO2. ACS Appl. Mater. Interfaces 2016, 8, 10884–10896. [Google Scholar] [CrossRef]
- Kim, D.-M.; Kim, S.-J.; Lee, Y.-W.; Kwak, D.-H.; Park, H.-C.; Kim, M.-C.; Hwang, B.-M.; Lee, S.; Choi, J.-H.; Hong, S.; et al. Two-dimensional nanocomposites based on tungsten oxide nanoplates and graphene nanosheets for high-performance lithium ion batteries. Electrochim. Acta 2015, 163, 132–139. [Google Scholar] [CrossRef]
- Thebo, K.H.; Qian, X.; Wei, Q.; Zhang, Q.; Cheng, H.-M.; Ren, W.J. Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation. J. Mater. Sci. Technol. 2018, 34, 1481–1486. [Google Scholar] [CrossRef]
MoO2@GO Membrane | WO3@GO Membrane | ||
---|---|---|---|
Thickness (nm) | Permeance (L m−2 h−1 bar−1) | Thickness (nm) | Permeance (L m−2 h−1 bar−1) |
400 ± 20 | 410 ± 20 | 420 ± 20 | 445 ± 20 |
640 ± 20 | 245 ± 20 | 700 ± 20 | 310 ± 20 |
850 ± 20 | 195 ± 20 | 900 ± 20 | 240 ± 20 |
Ions/Dyes | MW (g mol−1) | Charge | GO Membrane (295 ± 10 nm) | MoO2@GO Membrane (400 ± 20 nm) | WO3@GO Membrane (420 ± 20 nm) | |||
---|---|---|---|---|---|---|---|---|
Perm. | Rej. | Perm. | Rej. | Perm. | Rej. | |||
NaCl | 58.44 | N | 22 ± 2 | 40 ± 1 | 345 ± 10 | 79 ± 1 | 380 ± 10 | 70 ± 1 |
MgCl2 | 95.21 | N | 20 ± 2 | 66 ± 1 | 310 ± 10 | 82 ± 1 | 310 ± 10 | 75 ± 1 |
Ni(NO3)2 | 290.79 | N | 8 ± 2 | 90 ± 1 | 215 ± 10 | 99 ± 1 | 275 ± 10 | 99 ± 1 |
PbCl2 | 278.11 | N | 11 ± 2 | 85 ± 1 | 285 ± 10 | 98 ± 1 | 290 ± 10 | 98 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soomro, F.; Memon, F.H.; Khan, M.A.; Iqbal, M.; Ibrar, A.; Memon, A.A.; Lim, J.H.; Choi, K.H.; Thebo, K.H. Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification. Membranes 2023, 13, 64. https://doi.org/10.3390/membranes13010064
Soomro F, Memon FH, Khan MA, Iqbal M, Ibrar A, Memon AA, Lim JH, Choi KH, Thebo KH. Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification. Membranes. 2023; 13(1):64. https://doi.org/10.3390/membranes13010064
Chicago/Turabian StyleSoomro, Faheeda, Fida Hussain Memon, Muhammad Ali Khan, Muzaffar Iqbal, Aliya Ibrar, Ayaz Ali Memon, Jong Hwan Lim, Kyung Hyon Choi, and Khalid Hussain Thebo. 2023. "Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification" Membranes 13, no. 1: 64. https://doi.org/10.3390/membranes13010064
APA StyleSoomro, F., Memon, F. H., Khan, M. A., Iqbal, M., Ibrar, A., Memon, A. A., Lim, J. H., Choi, K. H., & Thebo, K. H. (2023). Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification. Membranes, 13(1), 64. https://doi.org/10.3390/membranes13010064