The Xenopus Oocyte: A Tool for Membrane Biology
Acknowledgments
Conflicts of Interest
References
- Bertaud, A.; Cens, T.; Mary, R.; Rousset, M.; Arel, E.; Thibaud, J.B.; Vignes, M.; Ménard, C.; Dutertre, S.; Collet, C.; et al. Xenopus Oocytes: A Tool to Decipher Molecular Specificity of Insecticides towards Mammalian and Insect GABA-A Receptors. Membranes 2022, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Rousset, M.; Humez, S.; Laurent, C.; Buée, L.; Blum, D.; Cens, T.; Vignes, M.; Charnet, P. Mammalian Brain Ca2+ Channel Activity Transplanted into Xenopus laevis Oocytes. Membranes 2022, 12, 496. [Google Scholar] [CrossRef] [PubMed]
- Marsal, J.; Tigyi, G.; Miledi, R. Incorporation of acetylcholine receptors and Cl− channels in Xenopus oocytes injected with Torpedo electroplaque membranes. Proc. Natl. Acad. Sci. USA 1995, 92, 5224–5228. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.; Moreno, N.; Gutierrez, B.A.; Limon, A. Microtransplantation of Postmortem Native Synaptic mGluRs Receptors into Xenopus Oocytes for Their Functional Analysis. Membranes 2022, 12, 931. [Google Scholar] [CrossRef] [PubMed]
- Ivorra, I.; Alberola-Die, A.; Cobo, R.; González-Ros, J.M.; Morales, A. Xenopus Oocytes as a Powerful Cellular Model to Study Foreign Fully-Processed Membrane Proteins. Membranes 2022, 12, 986. [Google Scholar] [CrossRef] [PubMed]
- Miledi, R.; Eusebi, F.; Martínez-Torres, A.; Palma, E.; Trettel, F. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes. Proc. Natl. Acad. Sci. USA 2002, 99, 13238–13242. [Google Scholar] [CrossRef] [PubMed]
- Palma, E.; Reyes-Ruiz, J.M.; Lopergolo, D.; Roseti, C.; Bertollini, C.; Ruffolo, G.; Cifelli, P.; Onesti, E.; Limatola, C.; Miledi, R.; et al. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy. Proc. Natl. Acad. Sci. USA 2016, 113, 3060–3065. [Google Scholar] [CrossRef] [PubMed]
- Crespin, L.; Legros, C.; List, O.; Tricoire-Leignel, H.; Mattei, C. Injection of insect membrane in Xenopus oocyte: An original method for the pharmacological characterization of neonicotinoid insecticides. J. Pharmacol. Toxicol. Methods 2016, 77, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Isaev, D.; Yang, K.S.; Petroianu, G.; Lorke, D.E.; Oz, M. Methylene Blue Inhibits Cromakalim-Activated K+ Currents in Follicle-Enclosed Oocytes. Membranes 2023, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Folacci, M.; Estaran, S.; Ménard, C.; Bertaud, A.; Rousset, M.; Roussel, J.; Thibaud, J.B.; Vignes, M.; Chavanieu, A.; Charnet, P.; et al. Functional Characterization of Four Known Cav2.1 Variants Associated with Neurodevelopmental Disorders. Membranes 2023, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Lummis, S.C.R.; Dougherty, D.A. Expression of Mutant Glycine Receptors in Xenopus Oocytes Using Canonical and Non-Canonical Amino Acids Reveals Distinct Roles of Conserved Proline Residues. Membranes 2022, 12, 1012. [Google Scholar] [CrossRef] [PubMed]
- Stein, L.; Brunner, N.; Amasheh, S. Functional Analysis of Gastric Tight Junction Proteins in Xenopus laevis Oocytes. Membranes 2022, 12, 731. [Google Scholar] [CrossRef] [PubMed]
- Vom Dahl, C.; Müller, C.E.; Berisha, X.; Nagel, G.; Zimmer, T. Coupling the Cardiac Voltage-Gated Sodium Channel to Channelrhodopsin-2 Generates Novel Optical Switches for Action Potential Studies. Membranes 2022, 12, 907. [Google Scholar] [CrossRef] [PubMed]
- Bernareggi, A.; Zangari, M.; Constanti, A.; Zacchi, P.; Borelli, V.; Mangogna, A.; Lorenzon, P.; Zabucchi, G. Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes. Membranes 2023, 13, 180. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, M.; Di Iacovo, A.; Romanazzi, T.; Roseti, C.; Cinquetti, R.; Bossi, E. The “www” of Xenopus laevis Oocytes: The Why, When, What of Xenopus laevis Oocytes in Membrane Transporters Research. Membranes 2022, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Gamba, G. Arterial Blood Pressure, Neuronal Excitability, Mineral Metabolism and Cell Volume Regulation Mechanisms Revealed by Xenopus laevis oocytes. Membranes 2022, 12, 911. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limon, A.; Mattei, C. The Xenopus Oocyte: A Tool for Membrane Biology. Membranes 2023, 13, 831. https://doi.org/10.3390/membranes13100831
Limon A, Mattei C. The Xenopus Oocyte: A Tool for Membrane Biology. Membranes. 2023; 13(10):831. https://doi.org/10.3390/membranes13100831
Chicago/Turabian StyleLimon, Agenor, and César Mattei. 2023. "The Xenopus Oocyte: A Tool for Membrane Biology" Membranes 13, no. 10: 831. https://doi.org/10.3390/membranes13100831
APA StyleLimon, A., & Mattei, C. (2023). The Xenopus Oocyte: A Tool for Membrane Biology. Membranes, 13(10), 831. https://doi.org/10.3390/membranes13100831