Features of Electrochemical Hydrogen Pump Based on Irradiated Proton Exchange Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Membrane Preparation
2.1.2. Membrane Electrode Assembly (MEA) Preparation
2.2. Methods
2.2.1. Water Uptake
2.2.2. Membrane Conductivity
2.2.3. Small-Angle X-ray Scattering (SAXS)
2.2.4. Thermogravimetric Analysis (TGA)
2.2.5. Electrochemical Studies of the EHP Cell
3. Results and Discussion
3.1. Water Uptake
3.2. Membrane Conductivity
3.3. Small-Angle X-ray Scattering
3.4. Thermogravimetric Analysis
3.5. Electrochemical Studies of the EHP Cell
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bukin, A.N.; Marunich, S.A.; Pak, Y.S.; Rastunova, I.L.; Rozenkevich, M.B.; Chebotov, A.Y. Specific Features and Current Status of Processes for Tritium Removal from Water: A Critical Review. Fusion Sci. Technol. 2022, 78, 595–606. [Google Scholar] [CrossRef]
- Magomedbekov, E.P.; Rastunova, I.L.; Kulov, N.N. Current State of Research in the Field of Detritiation of Technological Water Flows: A Review. Theor. Found. Chem. Eng. 2021, 55, 1111–1125. [Google Scholar] [CrossRef]
- Tanaka, M.; Katahira, K.; Asakura, Y.; Ohshima, T. Hydrogen Pump Using a High-Temperature Proton Conductor for Nuclear Fusion Engineering Applications. Solid State Ion. 2010, 181, 215–218. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.; Chen, X.; Khan, K.; Lin, B.; Luo, T. Exploring the Use of Electrochemical Hydrogen Pump in Tritium Extraction System and Coolant Purification System. Fusion Eng. Des. 2021, 172, 112905. [Google Scholar] [CrossRef]
- Xia, T.; He, C.; Yang, H.; Zhao, W.; Yang, L. Hydrogen Extraction Characteristics of High-Temperature Proton Conductor Ceramics for Hydrogen Isotopes Purification and Recovery. Fusion Eng. Des. 2014, 89, 1500–1504. [Google Scholar] [CrossRef]
- Hossain, M.K.; Hasan, S.M.K.; Hossain, M.I.; Das, R.C.; Bencherif, H.; Rubel, M.H.K.; Rahman, M.F.; Emrose, T.; Hashizume, K. A Review of Applications, Prospects, and Challenges of Proton-Conducting Zirconates in Electrochemical Hydrogen Devices. Nanomaterials 2022, 12, 3581. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Ohshima, T. Recovery of Hydrogen from Gas Mixture by an Intermediate-Temperature Type Proton Conductor. Fusion Eng. Des. 2010, 85, 1038–1043. [Google Scholar] [CrossRef]
- Ivanov, B.V.; Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Sinyakov, M.V.; Grigoriev, S.A.; Fateev, V.N. Experimental Study of the Electrochemical Hydrogen Pump Based on Proton Exchange Membrane for the Application in Fusion Fuel Cycle. Process Saf. Environ. Prot. 2023, 180, 744–751. [Google Scholar] [CrossRef]
- Vermaak, L.; Neomagus, H.W.J.P.; Bessarabov, D.G. Recent Advances in Membrane-Based Electrochemical Hydrogen Separation: A Review. Membranes 2021, 11, 127. [Google Scholar] [CrossRef]
- Ivanov, B.V.; Ivanova, N.A.; Mensharapov, R.M.; Sinyakov, M.V.; Ananiev, S.S.; Fateev, V.N. On the possibility of using an electrochemical hydrogen pump in a Fuel cycle of a fusion devises. Thermonucl. Fusion 2022, 45, 105–119. [Google Scholar]
- Zatoń, M.; Rozière, J.; Jones, D.J. Current Understanding of Chemical Degradation Mechanisms of Perfluorosulfonic Acid Membranes and Their Mitigation Strategies: A Review. Sustain. Energy Fuels 2017, 1, 409–438. [Google Scholar] [CrossRef]
- Khomein, P.; Ketelaars, W.; Lap, T.; Liu, G. Sulfonated Aromatic Polymer as a Future Proton Exchange Membrane: A Review of Sulfonation and Crosslinking Methods. Renew. Sustain. Energy Rev. 2021, 137, 110471. [Google Scholar] [CrossRef]
- Tsao, C.-S.; Chang, H.-L.; Jeng, U.-S.; Lin, J.-M.; Lin, T.-L. SAXS Characterization of the Nafion Membrane Nanostructure Modified by Radiation Cross-Linkage. Polymer 2005, 46, 8430–8437. [Google Scholar] [CrossRef]
- Iwai, Y.; Hiroki, A.; Tamada, M.; Yamanishi, T. Radiation Deterioration in Mechanical Properties and Ion Exchange Capacity of Nafion N117 Swelling in Water. J. Membr. Sci. 2008, 322, 249–255. [Google Scholar] [CrossRef]
- Castelino, P.; Jayarama, A.; Bhat, S.; Satyanarayan; Fernandes, P.; Prabhu, S.; Duttagupta, S.; Pinto, R. Role of UV Irradiated Nafion in Power Enhancement of Hydrogen Fuel Cells. Int. J. Hydrogen Energy 2021, 46, 25596–25607. [Google Scholar] [CrossRef]
- Rao, A.S.; Rashmi, K.R.; Manjunatha, D.V.; Jayarama, A.; Pinto, R. Role of UV Irradiation of Nafion Membranes on Ionic Groups Responsible for Proton Conduction and Mechanical Strength: A FTIR Spectroscopic Analysis. Mater. Today Commun. 2020, 25, 101471. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Johnson, H.; Kinge, S.; Van De Sanden, M.C.M.; Tsampas, M.N. Solar Hydrogen Generation from Ambient Humidity Using Functionalized Porous Photoanodes. ACS Appl. Mater. Interfaces 2019, 11, 41267–41280. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.B.; Greenway, S.D.; Clark, E.A. Radiation Stability of Nafion Membranes Used for Isotope Separation by Proton Exchange Membrane Electrolysis. Fusion Sci. Technol. 2010, 57, 103–111. [Google Scholar] [CrossRef]
- Maksimkin, I.P.; Yukhimchuk, A.A.; Boitsov, I.E.; Malkov, I.L.; Baurin, A.Y.; Grishechkin, S.K.; Shevnin, E.V. Radiogenic 3 He and High-Pressure Hydrogen Impact on Mechanical Properties and Structure of CrNi40MoCuTiAl Alloy. Fusion Sci. Technol. 2011, 60, 1519–1522. [Google Scholar] [CrossRef]
- Li, H.; Krishnaswamy, K.; Suppiah, S.; Philippi, N.; Reeves-Tate, D.; Ratnayake, A. Radiation Effects on the Performance of Proton Exchange Membranes in Electrochemical Cells. ECS Trans. 2013, 53, 1. [Google Scholar] [CrossRef]
- Whitehorne, T.J.J.; Muirhead, C.; Thomson, S.N.; Li, H.; Carson, R.; Boniface, H.; Suppiah, S. Study of Electrolyzer Materials at High Tritium Concentrations. Fusion Sci. Technol. 2021, 77, 26–32. [Google Scholar] [CrossRef]
- Akiyama, Y.; Sodaye, H.; Shibahara, Y.; Honda, Y.; Tagawa, S.; Nishijima, S. Study on Gamma-Ray-Induced Degradation of Polymer Electrolyte by pH Titration and Solution Analysis. Polym. Degrad. Stab. 2010, 95, 1–5. [Google Scholar] [CrossRef]
- Iwai, Y.; Yamanishi, T.; Nishi, M.; Yagi, T.; Tamada, M. Durability of Irradiated Polymers in Solid-Polymer-Electrolyte Water Electrolyzer. J. Nucl. Sci. Technol. 2005, 42, 636–642. [Google Scholar] [CrossRef]
- Roth, J.; Eller, J.; Büchi, F.N. Effects of Synchrotron Radiation on Polymer Electrolyte Fuel Cell Materials. ECS Trans. 2011, 41, 371–378. [Google Scholar] [CrossRef]
- Iwai, Y.; Sato, K.; Yamanishi, T. Investigation on Degradation Mechanism of Ion Exchange Membrane Immersed in Highly Concentrated Tritiated Water under the Broader Approach Activities. Fusion Eng. Des. 2014, 89, 1534–1538. [Google Scholar] [CrossRef]
- Martens, I.; Melo, L.G.A.; Wilkinson, D.P.; Bizzotto, D.; Hitchcock, A.P. Characterization of X-ray Damage to Perfluorosulfonic Acid Using Correlative Microscopy. J. Phys. Chem. C 2019, 123, 16023–16033. [Google Scholar] [CrossRef]
- Mohammadian-Kohol, M.; Asgari, M.; Shakur, H.R. Effect of Gamma Irradiation on the Structural, Mechanical and Optical Properties of Polytetrafluoroethylene Sheet. Radiat. Phys. Chem. 2018, 145, 11–18. [Google Scholar] [CrossRef]
- Pajuste, E.; Reinholds, I.; Vaivars, G.; Antuzevičs, A.; Avotiņa, L.; Sprūģis, E.; Mikko, R.; Heikki, K.; Meri, R.M.; Kaparkalējs, R. Evaluation of Radiation Stability of Electron Beam Irradiated Nafion® and Sulfonated Poly(Ether Ether Ketone) Membranes. Polym. Degrad. Stab. 2022, 200, 109970. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ohira, K. Gamma Radiolysis of Perfluorosulfonic Acid Ionomers and Their Side Chain Model Compounds in Water. Radiat. Phys. Chem. 2019, 159, 89–94. [Google Scholar] [CrossRef]
- Iwai, Y.; Yamanishi, T.; Isobe, K.; Nishi, M.; Yagi, T.; Tamada, M. Distinctive Radiation Durability of an Ion Exchange Membrane in the SPE Water Electrolyzer for the ITER Water Detritiation System. Fusion Eng. Des. 2006, 81, 815–820. [Google Scholar] [CrossRef]
- Iwai, Y.; Hiroki, A.; Tamada, M. Radiation-Induced Crosslinking of Nafion® N117CS Membranes. J. Membr. Sci. 2011, 369, 397–403. [Google Scholar] [CrossRef]
- Muirhead, C.; Li, H.; Pilatzke, K.; Byers, M.; Carson, R.; Boniface, H.; Suppiah, S. Decontamination of Proton Exchange Membranes after Tritium Exposure. Fusion Sci. Technol. 2017, 71, 281–285. [Google Scholar] [CrossRef]
- Akiyama, Y.; Sodaye, H.; Shibahara, Y.; Honda, Y.; Tagawa, S.; Nishijima, S. Study on Degradation Process of Polymer Electrolyte by Solution Analysis. J. Power Sources 2010, 195, 5915–5921. [Google Scholar] [CrossRef]
- Rao, A.S.; Rashmi, K.R.; Manjunatha, D.V.; Jayarama, A.; Prabhu, S.; Pinto, R. Pore Size Tuning of Nafion Membranes by UV Irradiation for Enhanced Proton Conductivity for Fuel Cell Applications. Int. J. Hydrogen Energy 2019, 44, 23762–23774. [Google Scholar] [CrossRef]
- Postolache, C.; Matei, L.; Georgescu, R.; Ionita, G. Optimal Parameter Determination for Tritiated Water Storage in Polyacrylic Networks. Fusion Sci. Technol. 2005, 48, 220–223. [Google Scholar] [CrossRef]
- Roth, J.; Eller, J.; Büchi, F.N. Effects of Synchrotron Radiation on Fuel Cell Materials. J. Electrochem. Soc. 2012, 159, F449–F455. [Google Scholar] [CrossRef]
- Mensharapov, R.; Ivanova, N.; Spasov, D.; Grigoriev, S.; Fateev, V. SAXS Investigation of the Effect of Freeze/Thaw Cycles on the Nanostructure of Nafion® Membranes. Polymers 2022, 14, 4395. [Google Scholar] [CrossRef]
- Dolgachev, G.I.; Kazakov, E.D.; Kalinin, Y.G.; Maslennikov, D.D.; Shvedov, A.A. RS-20MR High-Current Relativistic Electron Beam Generator Based on a Plasma Opening Switch and Its Applications. Plasma Phys. Rep. 2019, 45, 315–324. [Google Scholar] [CrossRef]
- Ivanov, B.V.; Ivanova, N.A.; Mensharapov, R.M.; Spasov, D.D.; Shkandybina, V.V.; Sinyakov, M.V. Effect of Hydrogen Pressure on the Electrochemical Hydrogen Pump Performance. In Proceedings of the 2023 IEEE 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russia, 16–18 March 2023; pp. 1–5. [Google Scholar]
- Yadav, R.; Fedkiw, P.S. Analysis of EIS Technique and Nafion 117 Conductivity as a Function of Temperature and Relative Humidity. J. Electrochem. Soc. 2012, 159, B340. [Google Scholar] [CrossRef]
- Suermann, M.; Kiupel, T.; Schmidt, T.J.; Büchi, F.N. Electrochemical Hydrogen Compression: Efficient Pressurization Concept Derived from an Energetic Evaluation. J. Electrochem. Soc. 2017, 164, F1187–F1195. [Google Scholar] [CrossRef]
- Stühmeier, B.M.; Pietsch, M.R.; Schwämmlein, J.N.; Gasteiger, H.A. Pressure and Temperature Dependence of the Hydrogen Oxidation and Evolution Reaction Kinetics on Pt Electrocatalysts via PEMFC-Based Hydrogen-Pump Measurements. J. Electrochem. Soc. 2021, 168, 064516. [Google Scholar] [CrossRef]
- Santarelli, M.G.; Torchio, M.F.; Cochis, P. Parameters Estimation of a PEM Fuel Cell Polarization Curve and Analysis of Their Behavior with Temperature. J. Power Sources 2006, 159, 824–835. [Google Scholar] [CrossRef]
- Wang, X.L.; Qu, Z.G.; Ren, G.F. Collective Enhancement in Hydrophobicity and Electrical Conductivity of Gas Diffusion Layer and the Electrochemical Performance of PEMFCs. J. Power Sources 2023, 575, 233077. [Google Scholar] [CrossRef]
- Safronova, E.Y.; Osipov, A.K.; Yaroslavtsev, A.B. Short Side Chain Aquivion Perfluorinated Sulfonated Proton-Conductive Membranes: Transport and Mechanical Properties. Pet. Chem. 2018, 58, 130–136. [Google Scholar] [CrossRef]
- Kusoglu, A.; Savagatrup, S.; Clark, K.T.; Weber, A.Z. Role of Mechanical Factors in Controlling the Structure–Function Relationship of Pfsa Ionomers. Macromolecules 2012, 45, 7467–7476. [Google Scholar] [CrossRef]
- Fernandez Bordín, S.P.; Andrada, H.E.; Carreras, A.C.; Castellano, G.E.; Oliveira, R.G.; Galván Josa, V.M. Nafion Membrane Channel Structure Studied by Small-Angle X-ray Scattering and Monte Carlo Simulations. Polymer 2018, 155, 58–63. [Google Scholar] [CrossRef]
- Choi, J.S.; Sohn, J.-Y.; Shin, J. A Comparative Study on EB-Radiation Deterioration of Nafion Membrane in Water and Isopropanol Solvents. Energies 2015, 8, 5370–5380. [Google Scholar] [CrossRef]
- Tang, H.-Y.; Santamaria, A.D.; Bachman, J.; Park, J.W. Vacuum-Assisted Drying of Polymer Electrolyte Membrane Fuel Cell. Appl. Energy 2013, 107, 264–270. [Google Scholar] [CrossRef]
- Shmygleva, L.V.; Kayumov, R.R.; Dobrovolsky, Y.A. Alternative Proton-Conducting Materials Basedon Calixarenes and Low Molecular Acidsfor Low-Temperature Fuel Cells and Sensors. Nanotechnol. Russ. 2020, 15, 301–307. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Fateev, V.N. The Membranes with Modified Surface to Stabilize Water Balance of Fuel Cell under Low Humidity Conditions: A Model Study. Nanotechnol. Russ. 2020, 15, 363–369. [Google Scholar] [CrossRef]
- Primachenko, O.N.; Marinenko, E.A.; Odinokov, A.S.; Kononova, S.V.; Kulvelis, Y.V.; Lebedev, V.T. State of the Art and Prospects in the Development of Proton-conducting Perfluorinated Membranes with Short Side Chains: A Review. Polym. Adv. Technol. 2021, 32, 1386–1408. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Mensharapov, R.M.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Nanostructured Pt20/SiO2x/C Electrocatalysts for Water-Balance Stabilization in a Proton Exchange Membrane Fuel Cell. Nanobiotechnol. Rep. 2022, 17, 320–327. [Google Scholar] [CrossRef]
Membrane | Water Uptake at 20 °C, wt. % |
---|---|
Aquivion® E98-15S | 25.0 ± 1.3 |
Aquivion® E98-15S [45] | 24.2 |
Aquivion® E98-15S irradiated | 24.3 ± 1.2 |
Membrane | ρ, Ohm·cm | σ, S·cm−1 |
---|---|---|
Aquivion® E98-15S | 8.7 | 0.115 |
Aquivion® E98-05S [45] | 6.7 | 0.149 |
Aquivion® E98-15S (irradiated) | 9.7 | 0.103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, N.A.; Ivanov, B.V.; Mensharapov, R.M.; Spasov, D.D.; Sinyakov, M.V.; Nagorny, S.V.; Kazakov, E.D.; Dmitryakov, P.V.; Bakirov, A.V.; Grigoriev, S.A. Features of Electrochemical Hydrogen Pump Based on Irradiated Proton Exchange Membrane. Membranes 2023, 13, 885. https://doi.org/10.3390/membranes13110885
Ivanova NA, Ivanov BV, Mensharapov RM, Spasov DD, Sinyakov MV, Nagorny SV, Kazakov ED, Dmitryakov PV, Bakirov AV, Grigoriev SA. Features of Electrochemical Hydrogen Pump Based on Irradiated Proton Exchange Membrane. Membranes. 2023; 13(11):885. https://doi.org/10.3390/membranes13110885
Chicago/Turabian StyleIvanova, Nataliya A., Boris V. Ivanov, Ruslan M. Mensharapov, Dmitry D. Spasov, Matvey V. Sinyakov, Seraphim V. Nagorny, Evgeny D. Kazakov, Petr V. Dmitryakov, Artem V. Bakirov, and Sergey A. Grigoriev. 2023. "Features of Electrochemical Hydrogen Pump Based on Irradiated Proton Exchange Membrane" Membranes 13, no. 11: 885. https://doi.org/10.3390/membranes13110885
APA StyleIvanova, N. A., Ivanov, B. V., Mensharapov, R. M., Spasov, D. D., Sinyakov, M. V., Nagorny, S. V., Kazakov, E. D., Dmitryakov, P. V., Bakirov, A. V., & Grigoriev, S. A. (2023). Features of Electrochemical Hydrogen Pump Based on Irradiated Proton Exchange Membrane. Membranes, 13(11), 885. https://doi.org/10.3390/membranes13110885