Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation and Characterization of Ag-CuO NPs
2.2.2. Preparation and Characterization of Modified Ceramic Membranes
2.2.3. Preparation and Characterization of O/W Emulsion
2.2.4. Permeation and Oil Rejection Performance of Membranes
2.2.5. Antifouling Studies
2.2.6. Corrosion-Resistance Test
3. Results and Discussion
3.1. Ag-CuO NPs Characteristics
3.2. Characteristics of Ag-CuO-Coated Hybrid Membranes
3.3. Pure Water Flux Test and Membrane Performance in O/W Removal
3.4. Antifouling Ability and Reusability Study Results
3.5. Corrosion Resistance
4. Conclusions
- Higher hydrophilicity and lower porosity with incremental levels of the NPs;
- Pure water flux was enhanced by a maximum of 30% compared to unmodified membrane;
- Oil rejection improved from 89.4% to 98.6% due to Ag-CuO NPs loading;
- Increased flux recovery ratio (~15%) and reduced irreversible fouling (~14%) compared to unmodified membrane;
- Membrane, modified with 0.5 wt.% NPs displayed excellent o/w filtration characteristics, good reusability, operational stability, and corrosion resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Namdar, R.; Karami, E.; Keshavarz, M. Climate change and vulnerability: The case of mena countries. ISPRS Int. J. Geo Inf. 2021, 10, 794. [Google Scholar] [CrossRef]
- Sakhel, S.R.; Geissen, S.-U.; Vogelpohl, A. Virtual industrial water usage and wastewater generation in the Middle East and North Africa 2011–2015. Euro Mediterr. J. Environ. Integr. 2017, 2, 7. [Google Scholar] [CrossRef]
- Gray, M. Reuse of Produced Water in the Oil and Gas Industry. In Proceedings of the SPE International Conference and Exhibition on Health, Safety, Environment, and Sustainability, Online, 27–31 July 2020. [Google Scholar] [CrossRef]
- Veil, J.A.; Puder, M.G.; Elcock, D.; Robert, J.; Redweik, J. A White Paper Describing Produced Water from Production of Crude Oil, Natural Gas, and Coal Bed Methane; No. ANL/EA/RP-112631; Argonne National Laboratory: Lemont, IL, USA, 2004. [Google Scholar]
- Ramirez, P. Oil field-produced water discharges into wetlands: Benefits and risks to wildlife. Environ. Geosci. 2005, 12, 65–72. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, Y.; Xiao, T.; Yang, X. A facile method to control pore structure of PVDF/SiO2 composite membranes for efficient oil/water purification. Membranes 2021, 11, 803. [Google Scholar] [CrossRef] [PubMed]
- Gryta, M. Resistance of Polypropylene Membrane to Oil Fouling during Membrane Distillation. Membranes 2021, 11, 552. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Goh, P.S.; Zulhairun, A.K.; Ismail, A.F. Antifouling property of oppositely charged titania nanosheet assembled on thin film composite reverse osmosis membrane for highly concentrated oily saline water treatment. Membranes 2020, 10, 237. [Google Scholar] [CrossRef]
- Banat, F.; Hai, A.; Selvaraj, M.; Govindan, B.; Krishnamoorthy, R.; Hassan, S. Demulsification Performance of Superhydrophobic PVDF Membrane: A Parametric Study. J. Membr. Sci. Res. 2020, 6, 390–394. [Google Scholar]
- Baig, U.; Waheed, A.; Abussaud, B.; Aljundi, I.H. A Simple Approach to Fabricate Composite Ceramic Membranes Decorated with Functionalized Carbide-Derived Carbon for Oily Wastewater Treatment. Membranes 2022, 12, 394. [Google Scholar] [CrossRef]
- Oliveira Neto, G.L.; Oliveira, N.G.N.; Delgado, J.M.P.Q.; Nascimento, L.P.C.; Gomez, R.S.; Cabral, A.S.; Cavalcante, D.C.M.; Miranda, V.A.M.; Farias Neto, S.R.; Lima, A.G.B. A New Design of Tubular Ceramic Membrane Module for Oily Water Treatment: Multiphase Flow Behavior and Performance Evaluation. Membranes 2020, 10, 403. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, S.; Zhang, L.; Ben Hida, A.; Zhang, G. Hydrophilic and Positively Charged Polyvinylidene Fluoride Membranes for Water Treatment with Excellent Anti-Oil and Anti-Biocontamination Properties. Membranes 2022, 12, 438. [Google Scholar] [CrossRef]
- Echakouri, M.; Salama, A.; Henni, A. Experimental Investigation of the Novel Periodic Feed Pressure Technique in Minimizing Fouling during the Filtration of Oily Water Systems Using Ceramic Membranes. Membranes 2022, 12, 868. [Google Scholar] [CrossRef]
- Dmitrieva, E.S.; Anokhina, T.S.; Novitsky, E.G.; Volkov, V.V.; Volkov, A.V.; Borisov, I.L. Polymeric Membranes for Oil-Water Separation: A Review. Polymers 2022, 14, 980. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Wang, J.; Ren, Y.; Xuan, C.; Liu, C.; Shen, C. Superhydrophobic and superoleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation. J. Hazard. Mater. 2018, 344, 849–856. [Google Scholar] [CrossRef]
- Arumugham, T.; Krishnamoorthy, R.; Hasan, S.W.; Banat, F. Recent advances in bioceramic-based nanocomposites for membrane and adsorption separation processes: A review. J. Water Process. Eng. 2022, 49, 103152. [Google Scholar] [CrossRef]
- Oliveira Neto, G.L.; Oliveira, N.G.N.; Delgado, J.M.P.Q.; Nascimento, L.P.C.; Magalhães, H.L.F.; de Oliveira, P.L.; Gomez, R.S.; Farias Neto, S.R.; Lima, A.G.B. Hydrodynamic and performance evaluation of a porous ceramic membrane module used on the water-oil separation process: An investigation by CFD. Membranes 2021, 11, 121. [Google Scholar] [CrossRef]
- Abdullayev, A.; Bekheet, M.F.; Hanaor, D.A.H.; Gurlo, A. Materials and applications for low-cost ceramic membranes. Membranes 2019, 9, 105. [Google Scholar] [CrossRef]
- Chen, M.; Heijman, S.G.J.; Rietveld, L.C. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. Membranes 2021, 11, 888. [Google Scholar] [CrossRef]
- Kallem, P.; Bharath, G.; Rambabu, K.; Srinivasakannan, C.; Banat, F. Improved permeability and antifouling performance of polyethersulfone ultrafiltration membranes tailored by hydroxyapatite/boron nitride nanocomposites. Chemosphere 2021, 268, 129306. [Google Scholar] [CrossRef]
- Ouda, M.; Hai, A.; Krishnamoorthy, R.; Govindan, B.; Othman, I.; Kui, C.C.; Choi, M.Y.; Hasan, S.W.; Banat, F. Surface tuned polyethersulfone membrane using an iron oxide functionalized halloysite nanocomposite for enhanced humic acid removal. Environ. Res. 2022, 204, 112113. [Google Scholar] [CrossRef]
- Lu, D.; Cheng, W.; Zhang, T.; Lu, X.; Liu, Q.; Jiang, J.; Ma, J. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion. Sep. Purif. Technol. 2016, 165, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, G.; Zhi, S.; Xu, K.; Zhu, L.; Li, W.; Zeng, Z.; Xue, Q. Superhydrophilicity and underwater superoleophobicity TiO2/Al2O3 composite membrane with ultra low oil adhesion for highly efficient oil-in-water emulsions separation. Appl. Surf. Sci. 2018, 458, 157–165. [Google Scholar] [CrossRef]
- Chen, T.; Duan, M.; Fang, S. Fabrication of novel superhydrophilic and underwater superoleophobic hierarchically structured ceramic membrane and its separation performance of oily wastewater. Ceram. Int. 2016, 42, 8604–8612. [Google Scholar] [CrossRef]
- Marzouk, S.S.; Naddeo, V.; Banat, F.; Hasan, S.W. Preparation of TiO2/SiO2 ceramic membranes via dip coating for the treatment of produced water. Chemosphere 2021, 273, 129684. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Zhou, J.E.; Wang, Y.; Wang, J.; Meng, G. Hydrophilic modification of Al2O3 microfiltration membrane with nano-sized γ-Al2O3 coating. Desalination 2010, 262, 110–114. [Google Scholar] [CrossRef]
- Zhou, J.E.; Chang, Q.; Wang, Y.; Wang, J.; Meng, G. Separation of stable oil-water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Sep. Purif. Technol. 2010, 75, 243–248. [Google Scholar] [CrossRef]
- Chang, Q.; Zhou, J.; Wang, Y.; Liang, J.; Zhang, X.; Cerneaux, S.; Wang, X.; Zhu, Z.; Dong, Y. Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion. J. Membr. Sci. 2014, 456, 128–133. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, T.; Gutierrez, L.; Ma, J.; Croué, J.P. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion. Environ. Sci. Technol. 2016, 50, 4668–4674. [Google Scholar] [CrossRef]
- Tamura, H.; Mita, K.; Tanaka, A.; Ito, M. Mechanism of hydroxylation of metal oxide surfaces. J. Colloid Interface Sci. 2001, 243, 202–207. [Google Scholar] [CrossRef]
- Suresh, K.; Srinu, T.; Ghoshal, A.K.; Pugazhenthi, G. Preparation and characterization of TiO2 and γ-Al2O3 composite membranes for the separation of oil-in-water emulsions. RSC Adv. 2016, 6, 4877–4888. [Google Scholar] [CrossRef]
- Hu, X.; Yu, Y.; Zhou, J.; Wang, Y.; Liang, J.; Zhang, X.; Chang, Q.; Song, L. The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. J. Membr. Sci. 2015, 476, 200–204. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Vatanpour, V.; Aber, S.; Mahmoodi, N.M. Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Sep. Purif. Technol. 2018, 192, 369–382. [Google Scholar] [CrossRef]
- Lipus, D.; Roy, D.; Khan, E.; Ross, D.; Vikram, A.; Gulliver, D.; Hammack, R.; Bibby, K. Microbial communities in Bakken region produced water. FEMS Microbiol. Lett. 2018, 365, fny107. [Google Scholar] [CrossRef]
- Tüccar, T.; Ilhan-Sungur, E.; Muyzer, G. Bacterial community composition in produced water of Diyarbakır oil fields in Turkey Bacterial communities in produced waters of south-eastern Turkey reported in detail for the first time. Johnson Matthey Technol. Rev. 2020, 64, 452–465. [Google Scholar] [CrossRef]
- Li, J.; Lv, C.; Liu, X.; Jiao, Z.; Liu, N. Highly Durable Ag-CuO Heterostructure-Decorated Mesh for Efficient Oil/Water Separation and In Situ Photocatalytic Dye Degradation. Energy Environ. Mater. 2021, 4, 611–619. [Google Scholar] [CrossRef]
- Kung, M.-L.; Tai, M.-H.; Lin, P.-Y.; Wu, D.-C.; Wu, W.-J.; Yeh, B.-W.; Hung, H.-S.; Kuo, C.-H.; Chen, Y.-W.; Hsieh, S.-L.; et al. Silver decorated copper oxide (Ag@ CuO) nanocomposite enhances ROS-mediated bacterial architecture collapse. Colloids Surf. B Biointerfaces 2017, 155, 399–407. [Google Scholar] [CrossRef]
- Maevskaya, M.V.; Rudakova, A.V.; Koroleva, A.V.; Sakhatskii, A.S.; Emeline, A.V.; Bahnemann, D.W. Effect of the type of heterostructures on photostimulated alteration of the surface hydrophilicity: TiO2/BiVO4 vs. ZnO/BiVO4 planar heterostructured coatings. Catalysts 2021, 11, 1424. [Google Scholar] [CrossRef]
- Asamoah, R.B.; Annan, E.; Mensah, B.; Nbelayim, P.; Apalangya, V.; Onwona-Agyeman, B.; Yaya, A. A Comparative Study of Antibacterial Activity of CuO/Ag and ZnO/Ag Nanocomposites. Adv. Mater. Sci. Eng. 2020, 2020, 7814324. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhou, J.; Miao, Y.; Yang, S.; Zhou, M.; Zhong, Z.; Xing, W. Lower-temperature preparation of SiC ceramic membrane using zeolite residue as sintering aid for oil-in-water separation. J. Membr. Sci. 2020, 610, 118238. [Google Scholar] [CrossRef]
- Rambabu, K.; Velu, S. Modified polyethersulfone ultrafiltration membrane for the treatment of tannery wastewater. Int. J. Environ. Stud. 2016, 73, 819–826. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Monash, P.; Velu, S.; Banat, F.; Naushad, M.M.; Arthanareeswaran, G.; Loke Show, P. Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane. Process Saf. Environ. Prot. 2019, 124, 266–278. [Google Scholar] [CrossRef]
- Salhi, B.; Baig, N.; Abdulazeez, I.; Al-Ahmed, A.; Aljundi, I.H. High flux polyaniline-coated ceramic membrane for effective separation of emulsified oil-in-water. Ceram. Int. 2022, 48, 25246–25253. [Google Scholar] [CrossRef]
- Arumugham, T.; Kaleekkal, N.J.; Gopal, S.; Nambikkattu, J.; Rambabu, K.; Aboulella, A.M.; Wickramasinghe, S.R.; Banat, F. Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review. J. Environ. Manag. 2021, 293, 112925. [Google Scholar] [CrossRef] [PubMed]
- Hai, A.; Rambabu, K.; Govindan, B.; Banat, F.; Naushad, M. Smart polymeric composite membranes for wastewater treatment. In Smart Polymer Nanocomposites; Elsevier: Dordrecht, The Netherlands, 2021; pp. 313–350. [Google Scholar]
- Rambabu, K.; Velu, S. Improved performance of CaCl2 incorporated polyethersulfone ultrafiltration membranes. Period. Polytech. Chem. Eng. 2016, 60, 181–191. [Google Scholar] [CrossRef]
- Rambabu, K.; Velu, S.; Rambabu, K.; Monash, P.; Sharma, C.; Sze, S.C.W.; Ho, J.C.K.; Liu, W.K. Improved hydrophilic property of PES/PEG/MnCO3 blended membranes for synthetic dye separation. Int. J. Environ. Stud. 2018, 75, 592–604. [Google Scholar]
- Rambabu, K.; Gokul, S.; Russel, A.S.; Sivaramakrishna, A.; Ponnusami, B.; Banat, F. Lithium perchlorate modified nanoporous polyethersulfone membranefor improved dye rejection. Desalin. Water Treat. 2018, 122, 146–157. [Google Scholar] [CrossRef]
- Li, C.; Sun, W.; Lu, Z.; Ao, X.; Yang, C.; Li, S. Systematic evaluation of TiO2-GO-modified ceramic membranes for water treatment: Retention properties and fouling mechanisms. Chem. Eng. J. 2019, 378, 122138. [Google Scholar] [CrossRef]
- Guo, W.; Ngo, H.H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef]
- Ma, J.; Du, B.; He, C.; Zeng, S.; Hua, K.; Xi, X.; Luo, B.; Shui, A.; Tian, W. Corrosion resistance properties of porous alumina-mullite ceramic membrane supports. Adv. Eng. Mater. 2020, 22, 1901442. [Google Scholar] [CrossRef]
Membrane ID | Jw1 (L m−2 h−1) | Jf (L m−2 h−1) | Jw2 (L m−2 h−1) | FRR (%) | Rr (%) | Rir (%) | Rt (%) |
---|---|---|---|---|---|---|---|
M 0 | 234.12 | 131.15 | 180.71 | 77.19% | 21.17% | 22.81% | 43.98% |
M 0.1 | 266.32 | 172.68 | 221.39 | 83.13% | 18.29% | 16.87% | 35.16% |
M 0.5 | 303.63 | 229.83 | 275.15 | 90.62% | 14.93% | 9.38% | 24.31% |
M 1.0 | 281.19 | 217.79 | 257.59 | 91.61% | 14.15% | 8.39% | 22.55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avornyo, A.; Thanigaivelan, A.; Krishnamoorthy, R.; Hassan, S.W.; Banat, F. Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater. Membranes 2023, 13, 176. https://doi.org/10.3390/membranes13020176
Avornyo A, Thanigaivelan A, Krishnamoorthy R, Hassan SW, Banat F. Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater. Membranes. 2023; 13(2):176. https://doi.org/10.3390/membranes13020176
Chicago/Turabian StyleAvornyo, Amos, Arumugham Thanigaivelan, Rambabu Krishnamoorthy, Shadi W. Hassan, and Fawzi Banat. 2023. "Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater" Membranes 13, no. 2: 176. https://doi.org/10.3390/membranes13020176
APA StyleAvornyo, A., Thanigaivelan, A., Krishnamoorthy, R., Hassan, S. W., & Banat, F. (2023). Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater. Membranes, 13(2), 176. https://doi.org/10.3390/membranes13020176