Synthesis and Characterisation of Self-Cleaning TiO2/PES Mixed Matrix Membranes in the Removal of Humic Acid
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Materials
2.2. Synthesis of PES Membrane
2.3. Synthesis of TiO2/PES Mixed Matrix Membrane
2.4. Characterization of TiO2 and TiO2/PES Mixed Matrix Membranes
2.4.1. ATR-FTIR Analysis
2.4.2. XRD Analysis
2.4.3. Membrane Morphology Observation
2.4.4. Contact Angle Analysis
2.4.5. Porosity Calculation
2.5. Preparation of Feed Solution (Humic Acid)
2.6. Determination of Humic Acid Concentration
2.7. Membrane Performance Evaluation
3. Results and Discussions
3.1. XRD Analysis of TiO2 Photocatalyst
3.2. Characterisation of TiO2/PES Mixed Matrix Membrane
3.2.1. Functionalisation Determination of Neat and TiO2/PES Membranes
3.2.2. Morphology Surface of the Membrane
3.2.3. Hydrophilicity of the Membrane
3.2.4. Membrane Porosity
3.3. Membrane Filtration Performance
3.3.1. Effect of Different Concentrations of TiO2 Photocatalysts in the Membrane
3.3.2. Effect of Duration of UV Irradiation
3.4. Membrane Fouling Behaviour Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, P.P.; Liao, Q.H.; Yao, H.Z.; Huang, Y.X.; Cheng, H.H.; Qu, L.T. Direct solar steam generation system for clean water production. Energy Storage Mater. 2018, 18, 429–446. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Zarei, A.; Mesdaghinia, A.; Nabizadeh, R.; Alimohammadi, M.; Afsharnia, M.; McKay, G. Production and application of a treated bentonite–chitosan composite for the efficient removal of humic acid from aqueous solution. Chem. Eng. Res. Des. 2018, 140, 102–115. [Google Scholar] [CrossRef]
- Derakhshani, E.; Naghizadeh, A. Optimisation of humic acid removal by adsorption onto bentonite and montmorillonite nanoparticles. J. Mol. Liq. 2018, 259, 76–81. [Google Scholar] [CrossRef]
- Abdullah, N.; Rahman, M.A.; Othman, M.H.D.; Jaafar, J.; Aziz, A.A. Preparation, characterisations and performance evaluations of alumina hollow fiber membrane incorporated with UiO-66 particles for humic acid removal. J. Membr. Sci. 2018, 563, 162–174. [Google Scholar] [CrossRef]
- Li, S.X.; Li, Z.J.; Ke, B.H.; He, Z.F.; Cui, Y.Y.; Pan, Z.Y.; Li, D.M.; Huang, S.; Lai, C.; Su, J.H. Magnetic multi-walled carbon nanotubes modified with polyaluminium chloride for removal of humic acid from aqueous solution. J. Mol. Liq. 2019, 279, 241–250. [Google Scholar] [CrossRef]
- Hasani, G.; Maleki, A.; Daraei, H.; Ghanbari, R.; Safari, M.; McKay, G.; Yetilmezsoy, K.; Ilhan, F.; Marzban, N. A comparative optimisation and performance analysis of four different electrocoagulation-flotation processes for humic acid removal from aqueous solutions. Process Saf. Environ. Prot. 2019, 121, 103–117. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, H.; Bernstein, R. Zwitterionic hydrogel modified reduced graphene oxide/ZnO nanocomposite blended membrane with high antifouling and antibiofouling performances. J. Colloid Interface Sci. 2022, 613, 426–433. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, W.; Huang, G.; Wei, J.; Ding, L.; Jaffrin, M.Y. Studies of membrane fouling mechanisms involved in the micellar-enhanced ultrafiltration using blocking models. RSC Adv. 2015, 5, 48484–48491. [Google Scholar] [CrossRef]
- El Rayess, Y.; Albasi, C.; Bacchin, P.; Taillandier, P.; Mietton-Peuchot, M.; Devatine, A. Analysis of membrane fouling during cross-flow microfiltration of wine. Innov. Food Sci. Emerg. Technol. 2012, 16, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Mozia, S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 2010, 73, 71–91. [Google Scholar] [CrossRef]
- Espíndola, J.C.; Cristóvão, R.O.; Mendes, A.; Boaventura, R.A.R.; Vilar, V.J.P. Photocatalytic membrane reactor performance towards oxytetracycline removal from synthetic and real matrices: Suspended vs immobilized TiO2-P25. Chem. Eng. J. 2019, 378, 122114. [Google Scholar] [CrossRef]
- Regmi, C.; Lotfi, S.; Espíndola, J.C.; Fischer, K.; Schulze, A.; Schäfer, A.I. Comparison of photocatalytic membrane reactor types for the degradation of an organic molecule by TiO2-coated PES membrane. Catalysts 2020, 10, 725. [Google Scholar] [CrossRef]
- Ayyaru, S.; Ahn, Y.H. Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES–STiO2) ultrafiltration membranes for fouling mitigation. J. Ind. Eng. Chem. 2018, 67, 199–209. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Wulandari, L.M. Fabrication of high performance PSF-rGO/TiO2 UF membrane for ruberry wastewater treatment. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012025. [Google Scholar] [CrossRef]
- Iritani, E. A Review on Modeling of Pore-Blocking Behaviors of Membranes During Pressurised Membrane Filtration. Dry. Technol. 2013, 31, 146–162. [Google Scholar] [CrossRef]
- Koo, D.C.H.; Tan, N.N.; Ng, Q.H.; Enche Ab Rahim, S.K.; Low, S.C.; Zhong, R.Y. Integrating advanced Keggin-structure polyoxometalate into polymeric membrane to enhance photocatalytic self-cleaning and antifouling functionalities. Korean J. Chem. Eng. 2022, 1–8. [Google Scholar] [CrossRef]
- Chakraborty, S.; Loutatidou, S.; Palmisano, G.; Kujawa, J.; Mavukkandy, M.O.; Al-Gharabli, S.; Curcio, E.; Arafat, H.A. Photocatalytic hollow fiber membranes for the degradation of pharmaceutical compounds in wastewater. J. Environ. Chem. Eng. 2017, 5, 5014–5024. [Google Scholar] [CrossRef]
- Mojdehi, A.P.; Chenar, M.P.; Namvar-Mahboub, M.; Eftekhari, M. Development of PES/polyaniline-modified TiO2 adsorptive membrane for copper removal. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123931. [Google Scholar] [CrossRef]
- Homaeigohara, S.H.; Mahdavi, H.; Elbahri, M. Extraordinarily water permeable sol-gel formed nanocomposite nanofibrous membranes. J. Colloid Interface Sci. 2011, 366, 51–56. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Pang, W.Y.; Mohd Shafie, Z.M.H.; Zaulkiflee, N.D. PES/PVP/TiO2 mixed matrix hollow fiber membrane with anti-fouling properties for humic acid removal. J. Water Process Eng. 2019, 31, 100827. [Google Scholar] [CrossRef]
- Rahimpour, A.; Madaeni, S.S.; Taheri, A.H.; Mansourpanah, Y. Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Membr. Sci. 2008, 313, 158–169. [Google Scholar] [CrossRef]
- Wu, G.P.; Gan, S.Y.; Cui, L.Z.; Xu, Y.Y. Preparation and characterisation of PES/TiO2 composite membranes. Appl. Surf. Sci. 2008, 254, 7080–7086. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.; Zinadini, S.; Feyzi, M.; Bahnemann, D.W. A novel photocatalytic self-cleaning PES nanofiltration membrane incorporating triple metal-nonmetal doped TiO2 (K-B-N-TiO2) for post treatment of biologically treated palm oil mill effluent. React. Funct. Polym. 2018, 127, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Li, H.B.; Shi, W.Y.; Zhang, Y.F.; Liu, D.Q.; Liu, X.F. Effects of Additives on the Morphology and Performance of PPTA/PVDF in Situ Blend UF Membrane. Polymers 2014, 6, 1846–1861. [Google Scholar] [CrossRef]
- Safarpour, M.; Vatanpour, V.; Khataee, A. Preparation and characterisation of graphene oxide/TiO2 blended PES nanofiltration membrane with improved anti-fouling and separation performance. Desalination 2016, 393, 65–78. [Google Scholar] [CrossRef]
- Kazemi, M.A.; Soltanieh, M.; Yazdanshenas, M.; Fillaudeau, L. Influence of cross-flow microfiltration on ceramic membrane fouling and beer quality. Desalination Water Treat. 2013, 51, 4302–4312. [Google Scholar] [CrossRef]
- Vela, M.C.V.; Blanco, S.Á.; García, J.L.; Rodríguez, E.B. Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Sep. Purif. Technol. 2008, 62, 489–498. [Google Scholar] [CrossRef]
- Iritani, E.; Katagiri, N. Developments of Blocking Filtration Model in Membrane Filtration. KONA Powder Part. J. 2016, 33, 179–202. [Google Scholar] [CrossRef] [Green Version]
- Bolton, G.; Casse, D.L.; Kuriyel, R. Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids. J. Membr. Sci. 2006, 277, 75–84. [Google Scholar] [CrossRef]
- Vincent Vela, M.C.; Álvarez Blanco, S.; Lora García, J.; Bergantiños Rodríguez, E. Analysis of membrane pore blocking models adapted to cross-flow ultrafiltration in the ultrafiltration of PEG. Chem. Eng. J. 2009, 149, 232–241. [Google Scholar] [CrossRef]
- Zularisam, A.W.; Ismail, A.F.; Salim, R. Behaviours of natural organic matter in membrane filtration for surface water treatment—A review. Desalination 2006, 194, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Tien, C.; Ramarao, B.V. Revisiting the laws of filtration: An assessment of their use in identifying particle retention mechanisms in filtration. J. Membr. Sci. 2011, 383, 17–25. [Google Scholar] [CrossRef]
- Qu, F.; Yan, Z.; Wang, H.; Wang, X.; Liang, H.; Yu, H.; He, J.; Li, G. A pilot study of hybrid biological activated carbon (BAC) filtration-ultrafiltration process for water supply in rural areas: Role of BAC pretreatment in alleviating membrane fouling. Environ. Sci. Water Res. Technol. 2018, 4, 315–324. [Google Scholar] [CrossRef]
Type of Membrane | Contact Angle (°) |
---|---|
Neat PES membrane | 88.01 ± 0.77 |
TiO2/PES mixed matrix membrane | 80.5 ± 30.89 |
Membrane | Porosity (%) |
---|---|
Neat PES membrane | 80.5 ± 0.81 |
TiO2/PES mixed matrix membrane | 86.34 ± 0.87 |
Model | Linearized Equation | Graphical Approaches | Schematic Diagram | Description |
---|---|---|---|---|
Cake filtration (n = 0) | The size of particles is larger than the pore size of membrane and unable to pass though the pores, forming the cake layer on the membrane surface. | |||
Intermediate blocking (n = 1) | The fouling happens as the particle is having the similar size towards the pore size of the membrane. | |||
Standard blocking (n = 1.5) | The fouling occurs due to the smaller particles than the pores size of membrane are deposited within the membrane pore. | |||
Complete blocking (n = 2) | The inlet pores of the membrane completely blocked by all particles on the membrane surface. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poon, Y.K.; Enche Ab Rahim, S.K.; Ng, Q.H.; Hoo, P.Y.; Abdullah, N.Y.; Nasib, A.; Abdullah, N.S. Synthesis and Characterisation of Self-Cleaning TiO2/PES Mixed Matrix Membranes in the Removal of Humic Acid. Membranes 2023, 13, 373. https://doi.org/10.3390/membranes13040373
Poon YK, Enche Ab Rahim SK, Ng QH, Hoo PY, Abdullah NY, Nasib A, Abdullah NS. Synthesis and Characterisation of Self-Cleaning TiO2/PES Mixed Matrix Membranes in the Removal of Humic Acid. Membranes. 2023; 13(4):373. https://doi.org/10.3390/membranes13040373
Chicago/Turabian StylePoon, Yan Kee, Siti Kartini Enche Ab Rahim, Qi Hwa Ng, Peng Yong Hoo, Nur Yasmin Abdullah, Amira Nasib, and Norazharuddin Shah Abdullah. 2023. "Synthesis and Characterisation of Self-Cleaning TiO2/PES Mixed Matrix Membranes in the Removal of Humic Acid" Membranes 13, no. 4: 373. https://doi.org/10.3390/membranes13040373
APA StylePoon, Y. K., Enche Ab Rahim, S. K., Ng, Q. H., Hoo, P. Y., Abdullah, N. Y., Nasib, A., & Abdullah, N. S. (2023). Synthesis and Characterisation of Self-Cleaning TiO2/PES Mixed Matrix Membranes in the Removal of Humic Acid. Membranes, 13(4), 373. https://doi.org/10.3390/membranes13040373