In Situ Incorporation of TiO2@Graphene Oxide (GO) Nanosheets in Polyacrylonitrile (PAN)-Based Membranes Matrix for Ultrafast Protein Separation
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the GO
2.3. Preparation of Mixed Matrix Membranes
2.4. Isolation of the GO in the GO/TiO2/PAN Membrane
2.5. Characterization of the Membranes
2.6. Filtration and Anti-Fouling Tests
3. Results and Discussion
3.1. Characterization of the Membranes
3.2. Permeability and Anti-Fouling Properties of the Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
BSA | Bovine serum albumin |
DI | Deionized |
DMAc | N, N-dimethylacetamide |
EDX | Energy dispersive X-ray detector |
FESEM | Field emission scanning electron microscopy |
FRR | Flux recovery ratio |
FTIR | Fourier transform infrared spectroscopy |
GO | Gaphene oxide |
HAc | Acetic acid |
MBR | Membrane bio-reactor |
MMMs | Mixed matrix membranes |
NIPS | Non-solvent induced phase separation |
PAN | Polyacrylonitrile |
PES | Polyether sulfone |
PSf | Polysulfone |
PVDF | Polyvinyl difluoride |
Rir | Irreversible flux loss |
Rr | Reversible flux loss |
Rt | Total fouling loss |
TBT | Tetrabutyl titanate |
UF | Ultrafiltration |
WCA | Water contact angle |
XPS | X-ray photoelectron spectroscopy |
References
- Liu, S.; Li, Z.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Recent advances on protein separation and purification methods. Adv. Colloid Interface Sci. 2020, 284, 102254. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.M. Protein separation and characterization procedures. In Food Analysis; Food Science Text Series; Nielsen, S.S., Ed.; Springer: Cham, Switzerland, 2017; pp. 431–453. [Google Scholar]
- Asenjo, J.A.; Andrews, B.A. Aqueous two-phase systems for protein separation: A perspective. J. Chromatogr. A 2011, 1218, 8826–8835. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Lu, J.J.; Liu, S. Protein separation by capillary gel electrophoresis: A review. Anal. Chim. Acta 2012, 709, 21–31. [Google Scholar] [CrossRef]
- Thekkilaveedu, S.; Krishnaswami, V.; Mohanan, D.P.; Alagarsamy, S.; Natesan, S.; Kandasamy, R. Lactic acid-mediated isolation of alpha-, beta- and kappa-casein fractions by isoelectric precipitation coupled with cold extraction from defatted cow milk. Int. J. Dairy Technol. 2020, 73, 31–39. [Google Scholar] [CrossRef]
- Li, B.; Guo, F.; Hu, H.; Liu, P.; Tan, M.J.; Pan, J.Y.; Zhai, L.H. The characterization of column heating effect in nanoflow liquid chromatography mass spectrometry (nanoLC-MS)–based proteomics. J. Mass Spectrom. 2020, 55, e4441. [Google Scholar] [CrossRef]
- Mathew, T.K.; Lakerveld, R. An airlift crystallizer for protein crystallization. Ind. Eng. Chem. Res. 2019, 58, 20381–20391. [Google Scholar] [CrossRef]
- Chen, G.; Song, W.; Qi, B.; Ghosh, R.; Wan, Y. Separation of human serum albumin and polyethylene glycol by electro-ultrafiltration. Biochem. Eng. J. 2016, 109, 127–136. [Google Scholar] [CrossRef]
- Chai, M.; Ye, Y.; Chen, V. Separation and concentration of milk proteins with a submerged membrane vibrational system. J. Membr. Sci. 2016, 524, 305–314. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, W.; Ould-Dris, A.; Jaffrin, M.Y.; Tang, B. Concentration of Milk Proteins for Producing Cheese Using a Shear-Enhanced Ultrafiltration Technique. Ind. Eng. Chem. Res. 2016, 55, 11130–11138. [Google Scholar] [CrossRef]
- Saraswathi, M.S.S.A.; Rana, D.; Kaleekkal, N.J.; Divya, K.; Nagendran, A. Investigating the efficacy of PVDF membranes customized with sulfonated graphene oxide nanosheets for enhanced permeability and antifouling. J. Environ. Chem. Eng. 2020, 8, 104426. [Google Scholar] [CrossRef]
- Lavanya, C.; Balakrishna, R.G. Naturally derived polysaccharides-modified PSF membranes: A potency in enriching the anti-fouling nature of membranes. Sep. Purif. Technol. 2020, 230, 115887. [Google Scholar] [CrossRef]
- Jiang, L.; Yun, J.; Wang, Y.; Yang, H.; Xu, Z.; Xu, Z.-L. High-flux, anti-fouling dendrimer grafted PAN membrane: Fabrication, performance and mechanisms. J. Membr. Sci. 2019, 596, 117743. [Google Scholar] [CrossRef]
- Al-Ghafri, B.; Kyaw, H.H.; Al-Abri, M.; Lau, W.-J. Performance study of novel PES membrane using electrospray deposition method for organic contaminants separation. Chem. Eng. Res. Des. 2022, 186, 73–81. [Google Scholar] [CrossRef]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process. Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Feng, H.; Liu, J.; Mu, Y.; Lu, N.; Zhang, S.; Zhang, M.; Luan, J.; Wang, G. Hybrid ultrafiltration membranes based on PES and MOFs @ carbon quantum dots for improving anti-fouling performance. Sep. Purif. Technol. 2021, 266, 118586. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, S.; He, F.; Cao, M.; Peng, S.; Li, Y. One-step transformation of highly hydrophobic membranes into superhydrophilic and underwater superoleophobic ones for high-efficiency separation of oil-in-water emulsions. J. Mater. Chem. A 2018, 6, 3391–3396. [Google Scholar] [CrossRef]
- Zarghami, S.; Mohammadi, T.; Sadrzadeh, M.; Van der Bruggen, B. Bio-inspired anchoring of amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) onto PES membrane using polydopamine for oily wastewater treatment. Sci. Total. Environ. 2019, 711, 134951. [Google Scholar] [CrossRef]
- Rohani, M.M.; Mehta, A.; Zydney, A.L. Development of high performance charged ligands to control protein transport through charge-modified ultrafiltration membranes. J. Membr. Sci. 2010, 362, 434–443. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, X.; Zhang, S.; Ren, J.; Yang, L.; Wang, Q.; Wang, G. Synthesis of sulfonated polyphenylsulfone as candidates for antifouling ultrafiltration membrane. Sep. Purif. Technol. 2012, 98, 298–307. [Google Scholar] [CrossRef]
- Li, Y.; Chung, T.-S. Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation. J. Membr. Sci. 2008, 309, 45–55. [Google Scholar] [CrossRef]
- Li, Y.; Soh, S.C.; Chung, T.-S.; Chan, S.Y. Exploration of ionic modification in dual-layer hollow fiber membranes for long-term high-performance protein separation. AIChE J. 2008, 55, 321–330. [Google Scholar] [CrossRef]
- Kim, D.-G.; Kang, H.; Han, S.; Lee, J.-C. The increase of antifouling properties of ultrafiltration membrane coated by star-shaped polymers. J. Mater. Chem. 2012, 22, 8654–8661. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, B.; Liu, Z.; Deng, B.; Yu, M.; Jiang, H.; Li, J. Preparation of the antifouling microfiltration membranes from poly (N, N-dimethylacrylamide) grafted poly (vinylidene fluoride)(PVDF) powder. J. Mater. Chem. 2011, 21, 11908–11915. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Wang, L.; Zhao, B.; Zhang, Z.; Xia, X.; Yang, H.; Xue, Y.; Chang, N. Enhancement of hydrophilicity and the resistance for irreversible fouling of polysulfone (PSF) membrane immobilized with graphene oxide (GO) through chloromethylated and quaternized reaction. Chem. Eng. J. 2017, 334, 2068–2078. [Google Scholar] [CrossRef]
- Han, R.; Ma, X.; Xie, Y.; Teng, D.; Zhang, S. Preparation of a new 2D MXene/PES composite membrane with excellent hydro-philicity and high flux. Rsc Adv. 2017, 7, 56204–56210. [Google Scholar] [CrossRef]
- Méricq, J.P.; Mendret, J.; Brosillon, S.; Faur, C. High performance PVDF-TiO2 membranes for water treatment. Chem. Eng. Sci. 2015, 123, 283–291. [Google Scholar] [CrossRef]
- Shen, J.-N.; Ruan, H.-M.; Wu, L.-G.; Gao, C.-J. Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment. Chem. Eng. J. 2011, 168, 1272–1278. [Google Scholar] [CrossRef]
- Ganesh, B.M.; Isloor, A.M.; Ismail, A.F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 2013, 313, 199–207. [Google Scholar] [CrossRef]
- Lee, J.; Chae, H.-R.; Won, Y.J.; Lee, K.; Lee, C.-H.; Lee, H.H.; Kim, I.-C.; Lee, J.-M. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci. 2013, 448, 223–230. [Google Scholar] [CrossRef]
- Nguyen, H.T.V.; Ngo, T.H.A.; Do, K.D.; Nguyen, M.N.; Dang, N.T.T.; Nguyen, T.T.H.; Vien, V.; Vu, T.A. Preparation and Characterization of a Hydrophilic Polysulfone Membrane Using Graphene Oxide. J. Chem. 2019, 2019, 3164373. [Google Scholar] [CrossRef]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014, 453, 292–301. [Google Scholar] [CrossRef]
- Razmjou, A.; Resosudarmo, A.; Holmes, R.L.; Mansouri, J.; Chen, V. The effect of modified TiO2 nanoparticles on the polyeth-ersulfone ultrafiltration hollow fiber membranes. Desalination 2012, 287, 271–280. [Google Scholar] [CrossRef]
- Yu, S.; Zuo, X.; Bao, R.; Xu, X.; Wang, J.; Xu, J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer 2009, 50, 553–559. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, S.; Ma, H.; Shan, W.; Gong, X.; Zhuan, H. A novel thin-film nanocomposite nanofiltration membrane by in-corporating 3D hyperbranched polymer functionalized 2D graphene oxide. Polymers 2018, 10, 1253. [Google Scholar] [CrossRef]
- Ayyaru, S.; Ahn, Y.-H. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes. J. Membr. Sci. 2017, 525, 210–219. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, J.; Wang, X.; Huo, X.; Li, Q.; Wang, L. Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particles. Chem. Eng. J. 2017, 314, 266–276. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Nackaerts, R.; Thwala, J.M.; Manba, B.B.; Verliefde, A.R.D. Hydrophilic fouling-resistant GO-ZnO/PES mem-branes for wastewater reclamation. J. Membr Sci. 2017, 524, 43–55. [Google Scholar] [CrossRef]
- Safarpour, M.; Vatanpour, V.; Khataee, A. Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 2015, 393, 65–78. [Google Scholar] [CrossRef]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*. Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef]
- Vatanpour, V.; Madaeni, S.S.; Moradian, R.; Zinadini, S.; Astinchap, B. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Membr. Sci. 2011, 375, 284–294. [Google Scholar] [CrossRef]
- Li, X.; Fang, X.; Pang, R.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling. J. Membr. Sci. 2014, 467, 226–235. [Google Scholar] [CrossRef]
- Wang, H.H.; Jung, J.T.; Kim, J.F.; Kim, S.; Drioli, E.; Lee, Y.M. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). J. Membr. Sci. 2018, 574, 44–54. [Google Scholar] [CrossRef]
- Maggay, I.V.; Yu, M.-L.; Wang, D.-M.; Chiang, C.-H.; Chang, Y.; Venault, A. Strategy to prepare skin-free and macrovoid-free polysulfone membranes via the NIPS process. J. Membr. Sci. 2022, 655, 120597. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Liu, R.; Gao, Z.; Yang, X.; Tu, Z.; Yang, F.; Ye, Z.; Cui, L.; Xu, C.; et al. Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties. J. Alloys Compd. 2016, 656, 24–32. [Google Scholar] [CrossRef]
- Chen, W.; Su, Y.; Zhang, L.; Shi, Q.; Peng, J.; Jiang, Z. In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes. J. Membr. Sci. 2009, 348, 75–83. [Google Scholar] [CrossRef]
- Wu, H.; Mansouri, J.; Chen, V. Silica nanoparticles as carriers of antifouling ligands for PVDF ultrafiltration membranes. J. Membr. Sci. 2013, 433, 135–151. [Google Scholar] [CrossRef]
- He, J.; Xiong, D.; Zhou, P.; Xiao, X.; Ni, F.; Deng, S.; Shen, F.; Tian, D.; Long, L.; Luo, L. A novel homogenous in-situ generated ferrihydrite nanoparticles/polyethersulfone composite membrane for removal of lead from water: Development, characterization, performance and mechanism. Chem. Eng. J. 2020, 393, 124696. [Google Scholar] [CrossRef]
- Janković, I.A.; Šaponjić, Z.V.; Čomor, M.I.; Nedeljković, J.M. Surface Modification of Colloidal TiO2 Nanoparticles with Bidentate Benzene Derivatives. J. Phys. Chem. C 2009, 113, 12645–12652. [Google Scholar] [CrossRef]
- Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, P. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process. Polymer 2006, 47, 2683–2688. [Google Scholar] [CrossRef]
- Zambare, R.S.; Dhopte, K.B.; Patwardhan, A.V.; Nemade, P.R. Polyamine functionalized graphene oxide polysulfone mixed matrix membranes with improved hydrophilicity and anti-fouling properties. Desalination 2017, 403, 24–35. [Google Scholar] [CrossRef]
- Vatanpour, V.; Madaeni, S.S.; Rajabi, L.; Zinadini, S.; Derakhshan, A.A. Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J. Membr. Sci. 2012, 401-402, 132–143. [Google Scholar] [CrossRef]
- Ikhsan, S.N.W.; Yusof, N.; Aziz, F.; Misdan, N.; Ismail, A.F.; Lau, W.-J.; Jaafar, J.; Salleh, W.N.W.; Hairom, N.H.H. Efficient separation of oily wastewater using polyethersulfone mixed matrix membrane incorporated with halloysite nanotube-hydrous ferric oxide nanoparticle. Sep. Purif. Technol. 2018, 199, 161–169. [Google Scholar] [CrossRef]
- Wienk, I.M.; Van, D.; Boomgaard, T.; Smolders, C.A. The formation of nodular structures in the top layer of ultrafiltration membranes. J. Appl. Polym. Sci. 1994, 53, 1011–1023. [Google Scholar] [CrossRef]
- Wienk, I.M.; Boom, R.M.; Beerlage, M.A.M.; Bulte, A.M.W.; Smolders, C.A.; Strathmann, H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J. Membr. Sci. 1996, 113, 361–371. [Google Scholar] [CrossRef]
- Wang, P.; Ma, J.; Wang, Z.; Shi, F.M.; Liu, Q.L. Enhanced separation performance of PVDF/PVP-g-MMT nanocomposite ultrafiltration membrane based on the NVP-grafted polymerization modification of montmorillonite (MMT). Langmuir 2012, 28, 4776–4786. [Google Scholar] [CrossRef]
- Teow, Y.H.; Ooi, B.S.; Ahmad, A.L. Fouling behaviours of PVDF-TiO2 mixed-matrix membrane applied to humic acid treatment. J. Water Process Eng. 2017, 15, 89–98. [Google Scholar] [CrossRef]
- Yuan, X.-T.; Xu, C.-X.; Geng, H.-Z.; Ji, Q.; Wang, L.; He, B.; Jiang, Y.; Kong, J.; Li, J. Multifunctional PVDF/CNT/GO mixed matrix membranes for ultrafiltration and fouling detection. J. Hazard. Mater. 2020, 384, 120978. [Google Scholar] [CrossRef]
- Jhaveri, J.H.; Patel, C.M.; Murthy, Z.V.P. Preparation, characterization and application of GO-TiO2/PVC mixed matrix membranes for improvement in performance. J. Ind. Eng. Chem. 2017, 52, 138–146. [Google Scholar] [CrossRef]
- Zinadini, S.; Rostami, S.; Vatanpour, V.; Jalilian, E. Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J. Membr. Sci. 2017, 529, 133–141. [Google Scholar] [CrossRef]
- Rajabi, H.; Ghaemi, N.; Madaeni, S.S.; Darael, P.; Astinchap, B.; Zinadini, S.; Razavizadeh. Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance. Appl. Surf. Sci. 2015, 349, 66–77. [Google Scholar] [CrossRef]
- Mukherjee, R.; Bhunia, P.; De, S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 2016, 292, 284–297. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Sz, P.-Y. Effect of membrane pore size on the performance of cross-flow microfiltration of BSA/dextran mixtures. J. Membr. Sci. 2011, 378, 272–279. [Google Scholar] [CrossRef]
- Xu, Z.; Ye, X.; Hu, P.; Min, Y.A.; Bosheng, L.V.; Qin, M.B.; Gao, C. Azido-group functionalized graphene oxide/polysulfone mixed matrix ultrafiltration membrane with enhanced interfacial compatibility for efficient water and wastewater treatment. Sep. Purif. Technol. 2022, 283, 120162. [Google Scholar] [CrossRef]
- Ismail, R.A.; Kumar, M.; Thomas, N.; An, A.K.; Arafat, H.A. Multifunctional hybrid UF membrane from poly(ether sulfone) and quaternized polydopamine anchored reduced graphene oxide nanohybrid for water treatment. J. Membr. Sci. 2021, 639, 119779. [Google Scholar] [CrossRef]
- Zambare, R.S.; Dhopte, K.B.; Nemade, P.R.; Tang, C.Y. Effect of oxidation degree of GO nanosheets on microstructure and performance of polysulfone-GO mixed matrix membranes. Sep. Purif. Technol. 2020, 244, 116865. [Google Scholar] [CrossRef]
- Ma, H.; Xie, Q.; Wu, C.; Shen, L.; Hong, Z.; Zhang, G.; Lu, Y.; Shao, W. A facile approach to enhance performance of PVDF-matrix nanocomposite membrane via manipulating migration behavior of graphene oxide. J. Membr. Sci. 2019, 590, 117268. [Google Scholar] [CrossRef]
- Luque-Alled, J.M.; Abdel-Karim, A.; Alberto, M.; Leaper, S.; Perez-Page, M.; Huang, K.; Vijayaraghavan, A.; El-Kalliny, A.S.; Holmes, S.M.; Gorgojo, P. Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide. Sep. Purif. Technol. 2020, 230, 115836. [Google Scholar] [CrossRef]
- Abdel-Karim, A.; Leaper, S.; Alberto, M.; Vijayaraghavan, A.; Fan, X.; Holmes, S.M.; Souaya, E.R.; Badawy, M.I.; Gorgojo, P. High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications. Chem. Eng. J. 2018, 334, 789–799. [Google Scholar] [CrossRef]
- Farahani, M.H.D.A.; Vatanpour, V. A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: Clay, functionalized carbon nanotube, SiO2 and TiO2. Sep. Purif. Technol. 2018, 197, 372–381. [Google Scholar] [CrossRef]
- Arockiasamy, D.L.; Alhoshan, M.; Alam, J.; Muthumareeswaran; Figoli, A.; Kumar, S.A. Separation of proteins and antifouling properties of polyphenylsulfone based mixed matrix hollow fiber membranes. Sep. Purif. Technol. 2016, 174, 529–543. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Wang, Q.; Pan, C.; Wu, Z. Comparison of antifouling behaviours of modified PVDF membranes by TiO2 sols with different nanoparticle size: Implications of casting solution stability. J. Membr. Sci. 2016, 525, 378–386. [Google Scholar] [CrossRef]
- Safarpour, M.; Khataee, A.; Vatanpour, V. Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Sep. Purif. Technol. 2014, 140, 32–42. [Google Scholar] [CrossRef]
- Padaki, M.; Emadzadeh, D.; Masturra, T.; Ismail, A. Antifouling properties of novel PSf and TNT composite membrane and study of effect of the flow direction on membrane washing. Desalination 2015, 362, 141–150. [Google Scholar] [CrossRef]
- Subramaniam, M.N.; Goh, P.S.; Lau, W.J.; Tan, Y.H.; Ng, B.C.; Ismail, A.F. Hydrophilic hollow fiber PVDF ultrafiltration membrane incorporated with titanate nanotubes for decolourization of aerobically-treated palm oil mill effluent. Chem. Eng. J. 2017, 316, 101–110. [Google Scholar] [CrossRef]
Membrane | PAN (g) | DMAc (g) | TBT (g) | GO (mg) | HAc (g) |
---|---|---|---|---|---|
PAN | 6 | 42 | 0 | 0 | 2 |
GO/PAN | 6 | 42 | 0 | 10.18 | 2 |
TiO2/PAN | 6 | 41.68 | 0.32 | 0 | 2 |
GO/TiO2/PAN | 6 | 41.68 | 0.32 | 10.18 | 2 |
Membranes | TiO2 Content in the Membranes (wt%) | |
---|---|---|
Experimental Values | Theoretical Values | |
TiO2/PAN | 0.62 | 1.23 |
GO/TiO2/PAN | 1.07 | 1.24 |
Region | GO/PAN (%) | TiO2/PAN (%) | GO/TiO2/PAN (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | O | N | C | O | N | Ti | C | O | N | Ti | |
A | 77.33 | 5.12 | 17.55 | 73.12 | 7.88 | 17.65 | 1.35 | 78.71 | 6.42 | 14.46 | 0.55 |
B | 77.08 | 4.97 | 17.95 | 73.44 | 7.62 | 17.73 | 1.21 | 78.66 | 6.21 | 14.62 | 0.51 |
C | 76.95 | 4.91 | 18.14 | 74.29 | 6.75 | 17.93 | 1.03 | 78.47 | 6.07 | 15.02 | 0.44 |
D | 76.90 | 4.88 | 18.22 | 76.00 | 5.12 | 18.34 | 0.54 | 78.16 | 5.87 | 15.61 | 0.36 |
E | 76.87 | 4.82 | 18.31 | 76.40 | 4.85 | 18.44 | 0.31 | 77.95 | 5.65 | 16.12 | 0.28 |
F | 76.85 | 4.70 | 18.45 | 76.70 | 4.66 | 18.52 | 0.12 | 77.19 | 5.13 | 17.58 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Liu, Q.; Xu, N.; Wang, Q.; Fan, L.; Dong, Q. In Situ Incorporation of TiO2@Graphene Oxide (GO) Nanosheets in Polyacrylonitrile (PAN)-Based Membranes Matrix for Ultrafast Protein Separation. Membranes 2023, 13, 377. https://doi.org/10.3390/membranes13040377
Zhou W, Liu Q, Xu N, Wang Q, Fan L, Dong Q. In Situ Incorporation of TiO2@Graphene Oxide (GO) Nanosheets in Polyacrylonitrile (PAN)-Based Membranes Matrix for Ultrafast Protein Separation. Membranes. 2023; 13(4):377. https://doi.org/10.3390/membranes13040377
Chicago/Turabian StyleZhou, Wei, Qiao Liu, Nong Xu, Qing Wang, Long Fan, and Qiang Dong. 2023. "In Situ Incorporation of TiO2@Graphene Oxide (GO) Nanosheets in Polyacrylonitrile (PAN)-Based Membranes Matrix for Ultrafast Protein Separation" Membranes 13, no. 4: 377. https://doi.org/10.3390/membranes13040377
APA StyleZhou, W., Liu, Q., Xu, N., Wang, Q., Fan, L., & Dong, Q. (2023). In Situ Incorporation of TiO2@Graphene Oxide (GO) Nanosheets in Polyacrylonitrile (PAN)-Based Membranes Matrix for Ultrafast Protein Separation. Membranes, 13(4), 377. https://doi.org/10.3390/membranes13040377