Enhanced Desulfurization Performance of ZIF−8/PEG MMMs: Effect of ZIF−8 Particle Size
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.2.1. Synthesis of ZIF−8 Particles
2.2.2. Membrane Preparation
2.3. Material Characterization
2.4. Pervaporation Performance
2.5. Packing Models and Simulation Details
3. Results and Discussion
3.1. Characterization of ZIF−8/PEG MMMs
3.1.1. ZIF−8 Particles
3.1.2. ZIF−8/PEG Mixed Matrix Membranes
3.2. Molecular Simulation
3.3. Pervaporation Performance of the Membranes
3.3.1. Effect of ZIF−8 Particle Size
3.3.2. Effect of ZIF−8 Loading
3.3.3. Effect of Operation Temperature
3.3.4. Effect of Feed Concentration
3.3.5. Comparison of Desulfurization Performances
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhan, X.; Zhao, X.; Ge, R.; Gao, Z.; Wang, L.; Sun, X.; Li, J. Constructing high-efficiency transport pathways via incorporating DP-POSS into PEG membranes for pervaporative desulfurization. Sep. Purif. Technol. 2022, 299, 121754. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, J.; Pan, F.; Li, Y.; Zhao, J.; Wang, S.; Huang, Y.; Li, Y.; Jiang, Z. Constructing high-efficiency facilitated transport pathways via embedding heterostructured Ag+@MOF/GO laminates into membranes for pervaporative desulfurization. Sep. Purif. Technol. 2020, 245, 116858. [Google Scholar] [CrossRef]
- Cheng, X.X.; Pan, F.S.; Wang, M.R.; Li, W.D.; Song, Y.M.; Liu, G.H.; Yang, H.; Gao, B.X.; Wu, H.; Jiang, Z.Y. Hybrid membranes for pervaporation separations. J. Membr. Sci. 2017, 541, 329–346. [Google Scholar] [CrossRef]
- Pan, F.; Ding, H.; Li, W.; Song, Y.; Yang, H.; Wu, H.; Jiang, Z.; Wang, B.; Cao, X. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. J. Membr. Sci. 2017, 545, 29–37. [Google Scholar] [CrossRef]
- Yang, D.; Yang, S.; Jiang, Z.; Yu, S.; Zhang, J.; Pan, F.; Cao, X.; Wang, B.; Yang, J. Polydimethyl siloxane–graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance. J. Membr. Sci. 2015, 487, 152–161. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Fíla, V.; Martin-Gil, V.; Muller, C. Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 mixtures. Sep. Purif. Technol. 2019, 210, 553–562. [Google Scholar] [CrossRef]
- Vatanpour, V.; Yuksekdag, A.; Agtas, M.; Mehrabi, M.; Salehi, E.; Castro-Munoz, R.; Koyuncu, I. Zeolitic imidazolate framework (ZIF−8) modified cellulose acetate NF membranes for potential water treatment application. Carbohydr. Polym. 2023, 299, 120230. [Google Scholar] [CrossRef]
- Jalali, A.M.; Shariatinia, Z.; Taromi, F.A. Desulfurization efficiency of polydimethylsiloxane/silica nanoparticle nanocomposite membranes: MD simulations. Comp. Mater. Sci. 2017, 139, 115–124. [Google Scholar] [CrossRef]
- Brandt, P.; Nuhnen, A.; Lange, M.; Möllmer, J.; Weingart, O.; Janiak, C. MOF-177, NH2-MIL-125(Ti) and MIL-160.Metal–Organic Frameworks with Potential Application for SO2 Separation and Flue Gas Desulfurization. ACS Appl. Mater. Inter. 2019, 11, 17350–17358. [Google Scholar] [CrossRef]
- Shi, W.; Han, X.; Bai, F.; Hua, C.; Cao, X. Enhanced desulfurization performance of polyethylene glycol membrane by incorporating metal organic framework MOF-505. Sep. Purif. Technol. 2021, 272, 118924. [Google Scholar] [CrossRef]
- Van de Voorde, B.; Hezinova, M.; Lannoeye, J.; Vandekerkhove, A.; Marszalek, B.; Gil, B.; Beurroies, I.; Nachtigall, P.; De Vos, D. Adsorptive desulfurization with CPO-27/MOF-74: An experimental and computational investigation. Phys. Chem. Chem. Phys. 2015, 17, 10759–10766. [Google Scholar] [CrossRef] [PubMed]
- Habimana, F.; Huo, Y.; Jiang, S.; Ji, S. Synthesis of europium metal–organic framework (Eu-MOF) and its performance in adsorptive desulfurization. Adsorption 2016, 22, 1147–1155. [Google Scholar] [CrossRef]
- Qin, J.-X.; Tan, P.; Jiang, Y.; Liu, X.-Q.; He, Q.-X.; Sun, L.-B. Functionalization of metal–organic frameworks with cuprous sites using vapor-induced selective reduction: Efficient adsorbents for deep desulfurization. Green Chem. 2016, 18, 3210–3215. [Google Scholar] [CrossRef]
- Qin, L.; Zhou, Y.; Li, D.; Zhang, L.; Zhao, Z.; Zuhra, Z.; Mu, C. Highly Dispersed HKUST-1 on Milimeter-Sized Mesoporous γ-Al2O3 Beads for Highly Effective Adsorptive Desulfurization. Ind. Eng. Chem. Res. 2016, 55, 7249–7258. [Google Scholar] [CrossRef]
- Huang, C.; Sun, R.; Lu, H.; Yang, Q.; Hu, J.; Wang, H.; Liu, H. A pilot trial for fast deep desulfurization on MOF-199 by simultaneous adsorption-separation via hydrocyclones. Sep. Purif. Technol. 2017, 182, 110–117. [Google Scholar] [CrossRef]
- Khan, N.A.; Kim, C.M.; Jhung, S.H. Adsorptive desulfurization using Cu–Ce/metal–organic framework: Improved performance based on synergy between Cu and Ce. Chem. Eng. J. 2017, 311, 20–27. [Google Scholar] [CrossRef]
- Li, X.; Mao, Y.; Leng, K.; Ye, G.; Sun, Y.; Xu, W. Enhancement of oxidative desulfurization performance over amorphous titania by doping MIL-101(Cr). Microporous Mesoporous Mater. 2017, 254, 114–120. [Google Scholar] [CrossRef]
- Ban, S.; Long, K.; Xie, J.; Sun, H.; Zhou, H. Thiophene Separation with Silver-Doped Cu-BTC Metal–Organic Framework for Deep Desulfurization. Ind. Eng. Chem. Res. 2018, 57, 2956–2966. [Google Scholar] [CrossRef]
- Wu, F.; Cao, Y.; Liu, H.; Zhang, X. High-performance UiO-66-NH 2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. J. Membr. Sci. 2018, 556, 54–65. [Google Scholar] [CrossRef]
- Zhu, L.; Jia, X.; Bian, H.; Huo, T.; Duan, Z.; Xiang, Y.; Xia, D. Structure and adsorptive desulfurization performance of the composite material MOF-5@AC. New J. Chem. 2018, 42, 3840–3850. [Google Scholar] [CrossRef]
- Han, X.; Hu, T.; Wang, Y.; Chen, H.; Wang, Y.; Yao, R.; Ma, X.; Li, J.; Li, X. A water-based mixing process for fabricating ZIF−8/PEG mixed matrix membranes with efficient desulfurization performance. Sep. Purif. Technol. 2018, 214, 61–66. [Google Scholar] [CrossRef]
- Zhan, X.; Ge, R.; Yao, S.; Lu, J.; Sun, X.; Li, J. Enhanced pervaporation performance of PEG membranes with synergistic effect of cross-linked PEG and porous MOF-508a. Sep. Purif. Technol. 2023, 304, 122347. [Google Scholar] [CrossRef]
- Han, X.; Sun, H.; Liu, L.; Wang, Y.; He, G.; Li, J. Improved desulfurization performance of polydimethylsiloxane membrane by incorporating metal organic framework CPO-27-Ni. Sep. Purif. Technol. 2019, 217, 86–94. [Google Scholar] [CrossRef]
- Yu, S.; Pan, F.; Yang, S.; Ding, H.; Jiang, Z.; Wang, B.; Li, Z.; Cao, X. Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chem. Eng. Sci. 2015, 135, 479–488. [Google Scholar] [CrossRef]
- Yu, S.; Jiang, Z.; Ding, H.; Pan, F.; Wang, B.; Yang, J.; Cao, X. Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. J. Membr. Sci. 2015, 481, 73–81. [Google Scholar] [CrossRef]
- Song, Y.M.; Yang, D.H.; Yu, S.N.; Teng, X.S.; Chang, Z.; Pan, F.S.; Bu, X.H.; Jiang, Z.Y.; Wang, B.Y.; Wang, S.; et al. Hybrid membranes with Cu(II) loaded metal organic frameworks for enhanced desulfurization performance. Sep. Purif. Technol. 2019, 210, 258–267. [Google Scholar] [CrossRef]
- Tanaka, S.; Kida, K.; Okita, M.; Ito, Y.; Miyake, Y. Size-controlled Synthesis of Zeolitic Imidazolate Framework-8 (ZIF−8) Crystals in an Aqueous System at Room Temperature. Chem. Lett. 2012, 41, 1337–1339. [Google Scholar] [CrossRef]
- Lee, T.H.; Oh, J.Y.; Hong, S.P.; Lee, J.M.; Roh, S.M.; Kim, S.H.; Park, H.B. ZIF−8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition. J. Membr. Sci. 2019, 570–571, 23–33. [Google Scholar] [CrossRef]
- Yin, H.D.; Khosravi, A.; O'Connor, L.; Tagaban, A.Q.; Wilson, L.; Houck, B.; Liu, Q.L.; Lind, M.L. Effect of ZIF-71 Particle Size on Free-Standing ZIF-71/PDMS Composite Membrane Performances for Ethanol and 1-Butanol Removal from Water through Pervaporation. Ind. Eng. Chem. Res. 2017, 56, 9167–9176. [Google Scholar] [CrossRef]
- Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering. Chem. Mater. 2011, 23, 2130–2141. [Google Scholar] [CrossRef]
- Keyvanloo, Z.; Nakhaei Pour, A.; Moosavi, F. Molecular simulation of adsorption and diffusion of H2 /CO2 /CO /MeOH /EtOH mixture into the zeolitic imidazolate framework ZIF−8. Microporous Mesoporous Mater. 2022, 333, 111723. [Google Scholar] [CrossRef]
- Dou, X.; Keywanlu, M.; Tayebee, R.; Mahdavi, B. Simulation of adsorption and release of doxepin onto ZIF−8 including in vitro cellular toxicity and viability. J. Mol. Liq. 2021, 329, 115557. [Google Scholar] [CrossRef]
- Khajavian, M.; Shahsavarifar, S.; Salehi, E.; Vatanpour, V.; Masteri-Farahani, M.; Ghaffari, F.; Tabatabaei, S.A. Ethylenediamine-functionalized ZIF−8 for modification of chitosan-based membrane adsorbents: Batch adsorption and molecular dynamic simulation. Chem. Eng. Res. Des. 2021, 175, 131–145. [Google Scholar] [CrossRef]
- Ordoñez, M.J.C.; Balkus, K.J.; Ferraris, J.P.; Musselman, I.H. Molecular sieving realized with ZIF−8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37. [Google Scholar] [CrossRef]
- Fang, M.; Wu, C.; Yang, Z.; Wang, T.; Xia, Y.; Li, J. ZIF−8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation. J. Membr. Sci. 2015, 474, 103–113. [Google Scholar] [CrossRef]
- Sholl, A.I.; Sholl, D.S. Molecular Dynamics Simulations of Self-Diffusivities, Corrected Diffusivities, and Transport Diffusivities of Light Gases in Four Silica Zeolites To Assess Influences of Pore Shape and Connectivity. J. Phys. Chem. A 2003, 107, 10132–10141. [Google Scholar]
- Monsalve-Bravo, G.M.; Bhatia, S.K. Concentration-dependent transport in finite sized composites: Modified effective medium theory. J. Membr. Sci. 2018, 550, 110–125. [Google Scholar] [CrossRef]
Particle Diameter (nm) | BET Surface Area (m2/g) | Micropore Diameter (nm) | Average Pore Size (nm) | Pore Volume (cm3/g) | |||
---|---|---|---|---|---|---|---|
Total | <2.0 nm | >2.0 nm | |||||
ZIF−8−L | ~610 | 1813 | 0.638 | 1.510 | 0.685 | 0.640 | 0.045 |
ZIF−8−M | ~270 | 1780 | 0.643 | 1.883 | 0.838 | 0.639 | 0.199 |
ZIF−8−S | ~80 | 1761 | 0.633 | 3.018 | 1.328 | 0.642 | 0.686 |
Sample | PEG Mass Fraction | Tm (°C) | Tc (°C) | ∆Hm (J/g) | Crystallinity (%) |
---|---|---|---|---|---|
pure PEG membrane | 1.00 | 59.80 | 33.99 | 106.5 | 52.0 |
ZIF−8−L/PEG-5 | 0.95 | 60.84 | 36.86 | 104.9 | 51.2 |
ZIF−8−L/PEG-10 | 0.90 | 61.13 | 35.55 | 99.46 | 48.5 |
ZIF−8−L/PEG-15 | 0.85 | 63.56 | 37.11 | 87.71 | 42.8 |
Molecules | Permeation Activation Energy (kJ/mol) | |||
---|---|---|---|---|
PEG | ZIF−8−L/PEG | ZIF−8−M/PEG | ZIF−8−S/PEG | |
Thiophene | 56.0 | 38.0 | 44.5 | 33.2 |
n−heptane | 55.6 | 51.1 | 61.9 | 52.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, X.; Gao, K.; Jia, Y.; Deng, W.; Liu, N.; Guo, X.; Li, H.; Li, J. Enhanced Desulfurization Performance of ZIF−8/PEG MMMs: Effect of ZIF−8 Particle Size. Membranes 2023, 13, 515. https://doi.org/10.3390/membranes13050515
Zhan X, Gao K, Jia Y, Deng W, Liu N, Guo X, Li H, Li J. Enhanced Desulfurization Performance of ZIF−8/PEG MMMs: Effect of ZIF−8 Particle Size. Membranes. 2023; 13(5):515. https://doi.org/10.3390/membranes13050515
Chicago/Turabian StyleZhan, Xia, Kaixiang Gao, Yucheng Jia, Wen Deng, Ning Liu, Xuebin Guo, Hehe Li, and Jiding Li. 2023. "Enhanced Desulfurization Performance of ZIF−8/PEG MMMs: Effect of ZIF−8 Particle Size" Membranes 13, no. 5: 515. https://doi.org/10.3390/membranes13050515
APA StyleZhan, X., Gao, K., Jia, Y., Deng, W., Liu, N., Guo, X., Li, H., & Li, J. (2023). Enhanced Desulfurization Performance of ZIF−8/PEG MMMs: Effect of ZIF−8 Particle Size. Membranes, 13(5), 515. https://doi.org/10.3390/membranes13050515