Enhanced Anti-Biofouling Properties of BWRO Membranes via the Deposition of Poly (Catechol/Polyamine) and Ag Nanoparticles
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. PCPA Coating and In Situ Formation of AgNPs
2.3. Characterization
2.4. Water Flux and Salt Rejection
2.5. Anti-Adhesion Property Evaluation
2.6. Anti-Bacterial and Stability Property of Membranes
3. Results and Discussion
3.1. Membrane Characterizations
3.2. Membrane Permselectivity
3.3. Membrane Anti-Adhesion Properties
3.4. Membrane Anti-Bacterial Property
3.5. AgNPs Stability Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fritzmann, C.; Lowenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Matin, A.; Khan, Z.; Zaidi, S.M.J.; Boyce, M.C. Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention. Desalination 2011, 281, 1–16. [Google Scholar] [CrossRef]
- Al-Juboori, R.A.; Yusaf, T. Biofouling in RO system: Mechanisms, monitoring and controlling. Desalination 2012, 302, 1–23. [Google Scholar] [CrossRef]
- Pontié, M.; Ben Rejeb, S.; Legrand, J. Anti-microbial approach onto cationic-exchange membranes. Sep. Purif. Technol. 2012, 101, 91–97. [Google Scholar] [CrossRef]
- Abushaban, A.; Salinas-Rodriguez, S.G.; Pastorelli, D.; Schippers, J.C.; Mondal, S.; Goueli, S.; Kennedy, M.D. Assessing Pretreatment Effectiveness for Particulate, Organic and Biological Fouling in a Full-Scale SWRO Desalination Plant. Membranes 2021, 11, 167. [Google Scholar] [CrossRef]
- Dhakal, N.; Salinas-Rodriguez, S.G.; Ampah, J.; Schippers, J.C.; Kennedy, M.D. Measuring Biofouling Potential in SWRO Plants with a Flow-Cytometry-Based Bacterial Growth Potential Method. Membranes 2021, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Henthome, L.; Boysen, B. State-of-the-art of reverse osmosis desalination pretreatment. Desalination 2015, 356, 129–139. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Samieirad, S. Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination 2010, 257, 80–86. [Google Scholar] [CrossRef]
- Ghayeni, S.B.S.; Beatson, P.J.; Schneider, R.P.; Fane, A.G. Water reclamation from municipal wastewater using combined microfiltration reverse osmosis (ME-RO): Preliminary performance data and microbiological aspects of system operation. Desalination 1998, 116, 65–80. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface Modifications for Antifouling Membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.D.; Cao, Y.M. Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res. 2012, 46, 584–600. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Q.; Hu, Z.Q.; Deng, B.L. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res. 2016, 88, 403–427. [Google Scholar] [CrossRef] [PubMed]
- Bian, S.J.; Wang, Y.Y.; Xiao, F.K.; Tong, Y.B.; Gao, C.J.; Zhu, G.R. Fabrication of polyamide thin-film nanocomposite reverse osmosis membrane with improved permeability and antibacterial performances using silver immobilized hollow polymer nanospheres. Desalination 2022, 539, 115953. [Google Scholar] [CrossRef]
- Firouzjaei, M.D.; Pejman, M.; Gh, M.S.; Aktij, S.A.; Zolghadr, E.; Rahimpour, A.; Sadrzadeh, M.; Shamsabadi, A.A.; Tiraferri, A.; Elliott, M. Functionalized polyamide membranes yield suppression of biofilm and planktonic bacteria while retaining flux and selectivity. Sep. Purif. Technol. 2022, 282, 119981. [Google Scholar] [CrossRef]
- Ben-Sasson, M.; Lu, X.L.; Bar-Zeev, E.; Zodrow, K.R.; Nejati, S.; Qi, G.G.; Giannelis, E.P.; Elimelech, M. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res. 2014, 62, 260–270. [Google Scholar] [CrossRef]
- Seyedpour, S.F.; Firouzjaei, M.D.; Rahimpour, A.; Zolghadr, E.; Shamsabadi, A.A.; Das, P.; Afkhami, F.A.; Sadrzadeh, M.; Tiraferri, A.; Elliott, M. Toward Sustainable Tackling of Biofouling Implications and Improved Performance of TFC FO Membranes Modified by Ag-MOF Nanorods. ACS Appl. Mater. Interfaces 2020, 12, 38285–38298. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Zhou, Z.B.; Huang, G.C.; Cheng, H.; Han, L.; Zhao, S.S.; Chen, Y.C.; Meng, F.A. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. Water Res. 2022, 222, 118901. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, G.; Zhang, J.H.; Xu, Z.G.; Zhao, Y.; Wang, Y.C.; She, F.H.; Gray, S.; Kong, L.X. Substrate-Independent, Regenerable Anti-Biofouling Coating for Polymeric Membranes. Membranes 2021, 11, 205. [Google Scholar] [CrossRef]
- Yin, J.; Yang, Y.; Hu, Z.Q.; Deng, B.L. Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J. Membr. Sci. 2013, 441, 73–82. [Google Scholar] [CrossRef]
- Park, S.H.; Ko, Y.S.; Park, S.J.; Lee, J.S.; Cho, J.; Baek, K.Y.; Kim, I.T.; Woo, K.; Lee, J.H. Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. J. Membr. Sci. 2016, 499, 80–91. [Google Scholar] [CrossRef]
- Soroush, A.; Ma, W.; Silvino, Y.; Rahaman, M.S. Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ. Sci.—Nano 2015, 2, 395–405. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Y.C.; Wang, J.Q.; Cap, B.; Tang, C.Y.Y. In Situ Reduction of Silver by Polydopamine: A Novel Antimicrobial Modification of a Thin-Film Composite Polyamide Membrane. Environ. Sci. Technol. 2016, 50, 9543–9550. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Cai, C.; Zhou, Z.; Qian, H.; Zha, F.L.; Guo, J.; Feng, B.; He, T.X.; Zhao, N.; Xu, J. Low-cost mussel inspired poly(catechol/polyamine) coating with superior anti-corrosion capability on copper. J. Colloid Interface Sci. 2016, 463, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Wang, Z.; Yan, W.T.; Wang, Y.; Wang, J.X.; Wang, S.C. Improving the hydrophilicity and fouling resistance of RO membranes by surface immobilization of PVP based on a metal-polyphenol precursor layer. J. Membr. Sci. 2015, 496, 58–69. [Google Scholar] [CrossRef]
- Dong, C.X.; Wang, Z.; Wu, J.H.; Wang, Y.; Wang, J.X.; Wang, S.C. A green strategy to immobilize silver nanoparticles onto reverse osmosis membrane for enhanced anti-biofouling property. Desalination 2017, 401, 32–41. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef]
- Wei, Z.Z.; Jin, Y.; Li, J.; Jia, L.Y.; Ma, Y.J.; Chen, M. Preparation of superhydrophobic PVDF composite membrane via catechol/polyamine co-deposition and Ag nanoparticles in-situ growth for membrane distillation. Desalination 2022, 529, 115649. [Google Scholar] [CrossRef]
- Yang, D.; Ni, Y.F.; Kong, X.X.; Xue, H.; Guo, W.L.; Zhang, L.Q. Enhanced electromechanical properties of natural rubber using highly efficient and cost-effective mussel-inspired modification of TiO2 nanoparticles. Appl. Surf. Sci. 2019, 495, 143638. [Google Scholar] [CrossRef]
- Hao, M.Z.; Li, L.; Shao, X.M.; Tian, M.; Zou, H.; Zhang, L.Q.; Wang, W.C. Fabrication of Highly Conductive Silver-Coated Aluminum Microspheres Based on Poly(catechol/polyamine) Surface Modification. Polymers 2022, 14, 2727. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.X.; He, X.; Liu, Y.Q.; Cao, C.P.; Zhang, W. Treatment of reverse osmosis membrane by sodium hypochlorite and alcohols for enhanced performance using the swelling-fastening effect. Chemosphere 2022, 292, 133444. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.X.; Liu, Y.; Zhang, W.; Xu, S.C. A Dopamine/Tannic-Acid-Based Co-Deposition Combined with Phytic Acid Modification to Enhance the Anti-Fouling Property of RO Membrane. Membranes 2021, 11, 342. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wei, Q.G.; Li, B.Y.; Yu, L.Y.; Ni, Y.F.; Zhang, L.Q. High thermal conductive silicone rubber composites constructed by strawberry-structured Al2O3-PCPA-Ag hybrids. Compos. Part A—Appl. Sci. Manuf. 2021, 142, 106260. [Google Scholar] [CrossRef]
- Kasemset, S.; Lee, A.; Miller, D.J.; Freeman, B.D.; Sharma, M.M. Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. J. Membr. Sci. 2013, 425, 208–216. [Google Scholar] [CrossRef]
- Geise, G.M.; Park, H.B.; Sagle, A.C.; Freeman, B.D.; McGrath, J.E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 2011, 369, 130–138. [Google Scholar] [CrossRef]
- Yan, W.T.; Wang, Z.; Wu, J.H.; Zhao, S.; Wang, J.X.; Wang, S.C. Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method. J. Membr. Sci. 2016, 498, 227–241. [Google Scholar] [CrossRef]
- Tang, L.; Livi, K.J.T.; Chen, K.L. Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles Formed in Situ To Mitigate Biofouling. Environ. Sci. Technol. Lett. 2015, 2, 59–65. [Google Scholar] [CrossRef]
- Helander, I.M.; Nurmiaho-Lassila, E.L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 2001, 71, 235–244. [Google Scholar] [CrossRef]
- Zhai, X.F.; Ye, J.L.; He, Y.T.; Ahmatjan, Z.; Zhang, Y.F.; Lin, S.; Wang, C.H.; Hu, X.Y.; Meng, J.Q. Antibacterial Thin Film Composite Polyamide Membranes Prepared by Sequential Interfacial Polymerization. Macromol. Mater. Eng. 2020, 305, 2000114. [Google Scholar] [CrossRef]
- Gao, H.H.; Xue, Y.J.; Zhang, Y.F.; Zhang, Y.J.; Meng, J.Q. Engineering of Ag-nanoparticle-encapsulated intermediate layer by tannic acid-inspired chemistry towards thin film nanocomposite membranes of superior antibiofouling property. J. Membr. Sci. 2022, 641, 119922. [Google Scholar] [CrossRef]
Sample | Atomic Percent (%) | |||
---|---|---|---|---|
C | N | O | Ag | |
PCPA3-Ag10 | 70.03 | 17.67 | 10.88 | 1.42 |
Samples | Atomic Percent (%) | Atomic Ratio | |||
---|---|---|---|---|---|
C | N | O | Ag | N/O | |
Virgin | 71.10 | 11.64 | 17.26 | - | 0.67 |
PCPA3 | 72.37 | 12.71 | 14.92 | - | 0.74 |
PCPA3-Ag10 | 69.96 | 17.06 | 11.02 | 1.46 | 1.35 |
BSA | SA | DTAB | ||||
---|---|---|---|---|---|---|
Virgin | PCPA3-Ag10 | Virgin | PCPA3-Ag10 | Virgin | PCPA3-Ag10 | |
FRR1 | 92.69 ± 0.11 | 98.05 ± 0.13 | 54.43 ± 0.20 | 98.81 ± 0.42 | 52.78 ± 2.46 | 83.23 ± 0.71 |
FRR2 | 88.68 ± 0.06 | 95.58 ± 0.02 | 78.42 ± 0.32 | 94.53 ± 0.20 | 49.50 ± 0.75 | 79.10 ± 0.28 |
FDRt | 12.34 ± 0.17 | 5.63 ± 0.09 | 36.34 ± 0.28 | 18.34 ± 0.33 | 59.81 ± 0.35 | 34.12 ± 0.15 |
Sample | B. subtilis | E. coli |
---|---|---|
Virgin | 12.5 ± 1.7 | 15.5 ± 0.9 |
PCPA3 | 96.1 ± 0.4 | 83.7 ± 1.3 |
PCPA3-Ag10 | 100 | 100 |
Base Membranes | Modified Layers | Loaded Ag Amounts (μg/cm2) | Release Rate of Ag+ (μg·cm−2·day−1) | Water Flux (L·m−2·h−1) | Rejection (%) | The Mortalities of Bacteria (%) | Refs. |
---|---|---|---|---|---|---|---|
Commercial PSF UF membrane | TA/Fe–Ag TFN | 108.30 | 0.127 a | N: --- M:34.3 | N: --- M:98.1 | --- | [41] |
Commercial RO (RE4021-TE, Woongjin Chemical Co.) | TA-Fe-PEI-Ag | 52.28 | 0.080 a | N:45.7 M:52.9 | N:98.9 M:99.2 | 100% for B. subtilis and E. coli | [27] |
Self-made PSU support layer | TFC-S–AgNPs | 15.50 | 0.100 b | N:49.8 M:69.4 | N:95.9 M;93.6 | --- | [21] |
Commercial PSF UF membrane | TFC-AgNP@SiO2 | 0.15 | 0.001 b | N:30.0 M:29.0 | N:99.0 M:98.8 | 92.7, 99.5 and 73.3% for E. coli, P. aeruginosa and S. aureus | [22] |
Commercial RO (SW30XL, Dow) | In situ AgNPs | 3.70 | 0.028 b | N:66.5 M: 58.5 | N:98.8 M:98.6 | 78.0%, 91.0%, and 96.0% for E. coli, P. aeruginosa, and S. aureus bacteria colonies | [17] |
Commercial RO (ESPA1, Nitto Denko Hydranautics) | PCPA3-Ag10 | 28.21 | 0.060 a | N:78.4 M:72.6 | N:97.9 M:97.0 | 100% for B. subtilis and E. coli | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; Liu, Y.; Xu, S.; Zhang, W. Enhanced Anti-Biofouling Properties of BWRO Membranes via the Deposition of Poly (Catechol/Polyamine) and Ag Nanoparticles. Membranes 2023, 13, 530. https://doi.org/10.3390/membranes13050530
Xie L, Liu Y, Xu S, Zhang W. Enhanced Anti-Biofouling Properties of BWRO Membranes via the Deposition of Poly (Catechol/Polyamine) and Ag Nanoparticles. Membranes. 2023; 13(5):530. https://doi.org/10.3390/membranes13050530
Chicago/Turabian StyleXie, Lixin, Yaqian Liu, Shichang Xu, and Wen Zhang. 2023. "Enhanced Anti-Biofouling Properties of BWRO Membranes via the Deposition of Poly (Catechol/Polyamine) and Ag Nanoparticles" Membranes 13, no. 5: 530. https://doi.org/10.3390/membranes13050530
APA StyleXie, L., Liu, Y., Xu, S., & Zhang, W. (2023). Enhanced Anti-Biofouling Properties of BWRO Membranes via the Deposition of Poly (Catechol/Polyamine) and Ag Nanoparticles. Membranes, 13(5), 530. https://doi.org/10.3390/membranes13050530