Nanoparticle-Embedded Polymers and Their Applications: A Review
Abstract
:1. Introduction
2. Factors Affecting the Performance of Polymeric Membranes
3. Development and Production of Nano-Based Polymeric Membranes
Membrane | Materials | Filler Type | Modification Technique | The Purpose of Modification and Its Advantages | Applications | Ref. |
---|---|---|---|---|---|---|
PSF/diatomite composite. | Polysulfone (PSF). | Silicon Dioxide (SiO2). | Phase inversion. | Exhibit excellent hydrophilicity, large-pore voids, and low surface roughness. | Remove oil, dye, and pharmaceutical waste from water bodies by treating effluents. | [27] |
Ultrafiltration membrane. | (PVDF)/(PAN). | SiO2 and TiO2 | Phase inversion. | Improvement in flux and antifouling properties. | Extensively used in drinking water and wastewater. | [28] |
PSF-PVP/LDH-Mt | PSF-PVP | Montmorillonite (Mt) modified with Mg-Fe double hydroxide layers (LDH-Mt). | Phase inversion. | The most hydrophilic materials, of the best thermal stability, and the highest surface roughness, induces a radical change in the architecture of pores. Modified membranes have an elongated, interconnecting pore structure. | Used for separation of an oil–water mixture. | [29] |
Composite films of interconnected silica networks on the polyester fabric. | Polyester fabric. | Octadecyl-polysiloxane networked silica nanoparticles. | One-step dip-coating method | Exhibited higher surface roughness and the membrane surface increased the contact angle to 178 degrees and swiftly passed nonpolar organic solvents, with an outstanding oil separation efficiency of >99.5%. | Effective oil–water separation | [30] |
PET/Pd nanoparticles. | Polyethylene terephthalate (PET). | Pd nanoparticles solution. | Carboxylation and nanoparticles deposition in porous polymeric membranes. | Increase in the selectivity of hydrogen in comparison to carbon dioxide (CO2) and nitrogen (N2) as carboxylation promotes H2 selectiveness. | Hydrogen separation. | [31] |
PS/PP-FOTS-SiO2NPs | Polysulfone/polypropylene membrane. | Perfluorooctyltriethoxysilane modified silica nanoparticles (FOTS-SiO2NPs). | Phase separation process. | The oil flux and separation efficiencies obtained were 84.9 L/h·m2 and 83.4%, respectively. Efficient oil cleaning from polluted water sources. | Oil–water emulsion separations. | [32] |
(PVDF)–ZnO composite membranes. | Polyvinylidene fluoride. | Zinc oxide (ZnO). | Blending process. | Confer substantial hydrophilic, photocatalytic, and antibacterial activities to polymeric membranes. | Wastewater treatments. | [33] |
PVDF-HFP/SiO2. | PVDF-HFP polymer. | SiO2 | Phase separation. | The porosity of the membrane was controlled, improving the mechanical properties of the membrane and excellent selectivity toward CO2. | CO2 Capturing and water purifications. | [34] |
3.1. Nanoparticle-Embedded Polymeric Membranes Manufacturing Processes and Applications
3.1.1. Nano-Based Polymeric Mixed-Matrix Membranes (MMMs)
Sol-Gel Process
Electrospinning
Phase Inversion Process
- Selection of appropriate inorganic nano-additives for uniform dispersion into the membrane matrix;
- Comprehension of the interaction between polymer and additive for the design of the optimum membrane structure;
- Improved regeneration or cleaning of mixed-matrix membranes for reuse, as well as an increase in the stability of nano-additives in the membrane structure after production for a long service life [70].
Layer-by-Layer Assembly
Template-Assisted Methods
Track-Etching Methods
3.1.2. Homogeneous Nanoparticle-Embedded Polymers (HPMs)
Surface Coating
Self-Assembly Process
Interfacial Polymerization (IP)
4. Recent Nanoparticle-Embedded Polymers and their Applications
5. Future Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roslan, R.A.; Lau, W.J.; Lai, G.S.; Zulhairun, A.K.; Yeong, Y.F.; Ismail, A.F.; Matsuura, T. Impacts of Multilayer Hybrid Coating on PSF Hollow Fiber Membrane for Enhanced Gas Separation. Membranes 2020, 10, 335. [Google Scholar] [CrossRef] [PubMed]
- Olaru, M.; Bordianu, I.; Simionescu, B.C. Systems Membranes-Complex Roadmaps towards Functional Devices and Coupled Processes; Editura PRINTECH Bucharest: București, Romania, 2010. [Google Scholar]
- Santosh, V.; Babu, P.V.; Gopinath, J.; Rao, N.N.M.; Sainath, A.V.S.; Reddy, A.V.R. Development of hydroxyl and carboxylic acid functionalized CNTs–polysulphone nanocomposite fouling-resistant ultrafiltration membranes for oil–water separation. Bull. Mater. Sci. 2020, 43, 1–12. [Google Scholar] [CrossRef]
- Agboola, O.; Fayomi, O.S.I.; Ayodeji, A.; Ayeni, A.O.; Alagbe, E.E.; Sanni, S.E.; Okoro, E.E.; Moropeng, L.; Sadiku, R.; Kupolati, K.W.; et al. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes 2021, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Castel, C.; Bounaceur, R.; Favre, E.; Engineering, E.F. Engineering of Membrane Gas Separation Processes: State of The Art and Prospects Engineering of Membrane Gas Separation Processes: State of The Art and Prospects Article info. J. Membr. Sci. Res. 2020. [Google Scholar] [CrossRef]
- Wang, X.Q.; Chow, C.L.; Lau, D. A Review on Modeling Techniques of Cementitious Materials under Different Length Scales: Development and Future Prospects. Adv. Theory Simul. 2019, 2, 1900047. [Google Scholar] [CrossRef]
- Olimattel, K.; Church, J.; Lee, W.H.; Chumbimuni-Torres, K.Y.; Zhai, L.; Sadmani, A.H.M.A. Enhanced Fouling Resistance and Antimicrobial Property of Ultrafiltration Membranes Via Polyelectrolyte-Assisted Silver Phosphate Nanoparticle Immobilization. Membranes 2020, 10, 293. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Cygańczuk, K.; Pastuszka, Ł.; Jurecki, L. Nanometals-Containing Polymeric Membranes for Purification Processes. Materials 2021, 14, 513. [Google Scholar] [CrossRef]
- Davletbaeva, I.M.; Sazonov, O.O.; Zakirov, I.N.; Gumerov, A.M.; Klinov, A.V.; Fazlyev, A.R.; Malygin, A.V. Organophosphorus Polyurethane Ionomers as Water Vapor Permeable and Pervaporation Membranes. Polymers 2021, 13, 1442. [Google Scholar] [CrossRef]
- Salim, S.H.; Al-Anbari, R.H.; Haider, A.J. Polymeric Membrane with Nanomaterial’s for Water Purification: A Review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Amusa, A.A.; Ahmad, A.L.; Jimoh, A.K. Enhanced Gas Separation Prowess Using Functionalized Lignin-Free Lignocellulosic Biomass/Polysulfone Composite Membranes. Membranes 2021, 11, 202. [Google Scholar] [CrossRef]
- Jiang, S.; Ladewig, B.P. Green synthesis of polymeric membranes: Recent advances and future prospects. Curr. Opin. Green Sustain. Chem. 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Alfannakh, H. AC Conductivity and Conduction Mechanism of Iron (II) Chloride (FeCl2) /Poly (vinyl alcohol) (PVA)/Poly (vinylpyrroldone) (PVP) Polymer Blend Electrolyte. 2021. preprint. [Google Scholar] [CrossRef]
- Lee, H.J.; Kang, S.W. Improvement of stability for cellulose polymer by calcium oxide for application to porous materials. Cellulose 2021. preprint. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, X.; Jiang, W.; Liu, H.; Sun, B. Chiral Recognition for Chromatography and Membrane-Based Separations: Recent Developments and Future Prospects. Molecules 2021, 26, 1145. [Google Scholar] [CrossRef] [PubMed]
- Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials 2020, 10, 1403. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.; Orozco, J. Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules 2022, 27, 3841. [Google Scholar] [CrossRef]
- Polisetti, V.; Ray, P. Nanoparticles modified Polyacrylonitrile/Polyacrylonitrile—Polyvinylidenefluoride blends as substrate of high flux anti-fouling nanofiltration membranes. J. Appl. Polym. Sci. 2020, 138, 50228. [Google Scholar] [CrossRef]
- Thummar, U.G.; Koradiya, A.; Saxena, M.; Polisetti, V.; Ray, P.; Singh, P.S. Scaling-up of robust nanofiltration membrane of ultrathin-film-composite structure. Desalination 2022, 530, 115650. [Google Scholar] [CrossRef]
- Adam, M.R.; Othman, M.H.D.; Abu Samah, R.; Puteh, M.H.; Ismail, A.; Mustafa, A.; Rahman, M.A.; Jaafar, J. Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Sep. Purif. Technol. 2018, 213, 114–132. [Google Scholar] [CrossRef]
- Plisko, T.V.; Burts, K.S.; Bildyukevich, A.V. Development of High Flux Nanocomposite Polyphenylsulfone/Oxidized Multiwalled Carbon Nanotubes Membranes for Ultrafiltration Using the Systems with Critical Solution Temperatures. Membranes 2022, 12, 724. [Google Scholar] [CrossRef]
- Chabalala, M.B.; Gumbi, N.N.; Mamba, B.B.; Al-Abri, M.Z.; Nxumalo, E.N. Photocatalytic Nanofiber Membranes for the Degradation of Micropollutants and Their Antimicrobial Activity: Recent Advances and Future Prospects. Membranes 2021, 11, 678. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Singha, N.R. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects. Membranes 2017, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: History, current efforts, and future directions. Chem. Soc. Rev. 2021, 50, 6290–6307. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Rodrigue, D. A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly (Vinylidene Fluoride). Polymers 2019, 11, 1160. [Google Scholar] [CrossRef]
- Paidi, M.K.; Polisetti, V.; Damarla, K.; Singh, P.S.; Mandal, S.K.; Ray, P. 3D Natural Mesoporous Biosilica-Embedded Polysulfone Made Ultrafiltration Membranes for Application in Separation Technology. Polymers 2022, 14, 1750. [Google Scholar] [CrossRef]
- Polisetti, V.; Ray, P. Nano SiO2 and TiO2 embedded polyacrylonitrile/polyvinylidene fluoride ultrafiltration membranes: Improvement in flux and antifouling properties. J. Appl. Polym. Sci. 2020, 138, 49606. [Google Scholar] [CrossRef]
- Makwana, D.; Polisetti, V.; Castaño, J.; Ray, P.; Bajaj, H.C. Mg-Fe layered double hydroxide modified montmorillonite as hydrophilic nanofiller in polysulfone- polyvinylpyrrolidone blend ultrafiltration membranes: Separation of oil-water mixture. Appl. Clay Sci. 2020, 192, 105636. [Google Scholar] [CrossRef]
- Polisetti, V.; Naidu, S.; Kansara, A.M.; Ray, P.; Singh, P.S. An instant oil separation by octadecyl-polysiloxane-reticulated recyclable superhydrophobic polyester fabric. Environ. Technol. Innov. 2020, 21, 101322. [Google Scholar] [CrossRef]
- Kumar, R.; Kamakshi; Kumar, M.; Awasthi, K. Selective deposition of Pd nanoparticles in porous PET membrane for hydrogen separation. Int. J. Hydrogen Energy 2017, 42, 15203–15210. [Google Scholar] [CrossRef]
- Tjale, L.; Richards, H.; Mahlangu, O.; Nthunya, L.N. Silica nanoparticle modified polysulfone/polypropylene membrane for separation of oil-water emulsions. Results Eng. 2022, 16, 100623. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Z.; Liu, Y.; Li, R.; Xu, Y.; Jakaj, G.; Lin, H. Polymeric Membranes Incorporated With ZnO Nanoparticles for Membrane Fouling Mitigation: A Brief Review. Front. Chem. 2020, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Khdary, N.H.; Abdelsalam, M.E. Polymer-silica nanocomposite membranes for CO2 capturing. Arab. J. Chem. 2020, 13, 557–567. [Google Scholar] [CrossRef]
- Ji, Y.; Yin, M.; An, Q.; Gao, C. Recent developments in polymeric nano-based separation membranes. Fundam. Res. 2022, 2, 254–267. [Google Scholar] [CrossRef]
- Vinti, G.; Vaccari, M. Solid Waste Management in Rural Communities of Developing Countries: An Overview of Challenges and Opportunities. Clean Technol. 2022, 4, 1138–1151. [Google Scholar] [CrossRef]
- Zhai, X.; Wang, Y.-L.; Dai, R.; Li, X.; Wang, Z. Roles of Anion–Cation Coupling Transport and Dehydration-Induced Ion–Membrane Interaction in Precise Separation of Ions by Nanofiltration Membranes. Environ. Sci. Technol. 2022, 56, 14069–14079. [Google Scholar] [CrossRef]
- Raveshiyan, S.; Amirabedi, P.; Yegani, R.; Pourabbas, B.; Tavakoli, A. CO2 absorption through PP/fSiO2 nanocomposite hollow fiber membrane contactor. Polyolefins J. 2022, 9, 61–71. [Google Scholar] [CrossRef]
- Ramezani, M.; Vaezi, M.R.; Kazemzadeh, A. Preparation of silane-functionalized silica films via two-step dip coating sol–gel and evaluation of their superhydrophobic properties. Appl. Surf. Sci. 2014, 317, 147–153. [Google Scholar] [CrossRef]
- Mansourizadeh, A.; Ismail, A.F. Hollow fiber gas–liquid membrane contactors for acid gas capture: A review. J. Hazard. Mater. 2009, 171, 38–53. [Google Scholar] [CrossRef]
- Hamdi, A.; Chalon, J.; Laurent, P.; Dodin, B.; Dogheche, E.; Champagne, P. Facile synthesis of fluorine-free, hydrophobic, and highly transparent coatings for self-cleaning applications. J. Coatings Technol. Res. 2021, 18, 807–818. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R. Gas–liquid membrane contactors for acid gas removal: Recent advances and future challenges. Curr. Opin. Chem. Eng. 2013, 2, 255–262. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R. Fabrication of novel polyetherimide-fluorinated silica organic–inorganic composite hollow fiber membranes intended for membrane contactor application. J. Membr. Sci. 2013, 443, 170–180. [Google Scholar] [CrossRef]
- Ganbavle, V.V.; Bangi, U.K.H.; Latthe, S.S.; Mahadik, S.A.; Rao, A.V. Self-cleaning silica coatings on glass by single step sol-gel route. Surf. Coat. Technol. 2011, 205, 5338–5344. [Google Scholar] [CrossRef]
- Bakonyi, P.; Koók, L.; Kumar, G.; Tóth, G.; Rózsenberszki, T.; Nguyen, D.D.; Chang, S.W.; Zhen, G.; Bélafi-Bakó, K.; Nemestothy, N. Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects. J. Membr. Sci. 2018, 564, 508–522. [Google Scholar] [CrossRef]
- Najim, A. A review of advances in freeze desalination and future prospects. npj Clean Water 2022, 5, 1–15. [Google Scholar] [CrossRef]
- Polisetti, V.; Ray, P. Hydrophilic modification through incorporation of nanoparticles in ultrafiltration membranes. Mater. Today Proc. 2021, 54, 797–809. [Google Scholar] [CrossRef]
- Chudasama, N.A.; Polisetti, V.; Maity, T.K.; Reddy, A.; Prasad, K. Preparation of seaweed polysaccharide based hydrophobic composite membranes for the separation of oil/water emulsion and protein. Int. J. Biol. Macromol. 2021, 199, 36–41. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, S.; Wu, Y.; Shi, S.; Xiao, G. Recent Advances of Pervaporation Separation in DMF/H2O Solutions: A Review. Membranes 2021, 11, 455. [Google Scholar] [CrossRef]
- Xie, Y.-T.; Chen, J.-R.; Chen, Y.-T.; Jiang, B.-C.; Sie, Z.-H.; Hsu, H.-Y.; Chen, T.-L.; Chiang, Y.-Y.; Hsueh, H.-Y. Sol–gel-derived hierarchically wrinkled mesoporous ceramics for enhancement of cell alignment. Chem. Eng. J. 2020, 405, 126572. [Google Scholar] [CrossRef]
- Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S.-J.; Oruganti, S.K. Review—Influence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles. ECS J. Solid State Sci. Technol. 2021, 10, 023002. [Google Scholar] [CrossRef]
- Yu, H.J.; Chiou, D.-S.; Hsu, C.-H.; Tsai, H.-Y.; Kan, M.-Y.; Lee, J.S.; Kang, D.-Y. Engineering CAU-10-H in the preparation of mixed matrix membranes for gas separation. J. Membr. Sci. 2022, 663, 121024. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Chen, H.; Huang, M.; Liu, Y.; Meng, L.; Ma, M. Functionalized electrospun nanofiber membranes for water treatment: A review. Sci. Total. Environ. 2020, 739, 139944. [Google Scholar] [CrossRef]
- Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A.G. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog. Polym. Sci. 2018, 77, 69–94. [Google Scholar] [CrossRef]
- Kusumaatmaja, A.; Sukandaru, B.; Chotimah; Triyana, K. Application of polyvinyl alcohol nanofiber membrane for smoke filtration. AIP Conf. Proc. 2016, 1755, 150006. [Google Scholar] [CrossRef]
- Lalia, B.S.; Guillen-Burrieza, E.; Arafat, H.A.; Hashaikeh, R. Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. J. Membr. Sci. 2012, 428, 104–115. [Google Scholar] [CrossRef]
- Chen, T.; Wei, X.; Chen, Z.; Morin, D.; Alvarez, S.V.; Yoon, Y.; Huang, Y. Designing energy-efficient separation membranes: Knowledge from nature for a sustainable future. Adv. Membr. 2022, 2, 100031. [Google Scholar] [CrossRef]
- Al Harby, N.F.; El-Batouti, M.; Elewa, M.M. Prospects of Polymeric Nanocomposite Membranes for Water Purification and Scalability and their Health and Environmental Impacts: A Review. Nanomaterials 2022, 12, 3637. [Google Scholar] [CrossRef]
- Geleta, T.A.; Maggay, I.V.; Chang, Y.; Venault, A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes 2023, 13, 58. [Google Scholar] [CrossRef]
- Lin, K.-Y.; Wang, D.-M.; Lai, J.-Y. Nonsolvent-Induced Gelation and Its Effect on Membrane Morphology. Macromolecules 2002, 35, 6697–6706. [Google Scholar] [CrossRef]
- Duraikkannu, S.L.; Castro-Muñoz, R.; Figoli, A. A review on phase-inversion technique-based polymer microsphere fabrication. Colloid Interface Sci. Commun. 2021, 40, 100329. [Google Scholar] [CrossRef]
- Baldino, L.; Cardea, S.; Reverchon, E. Supercritical Phase Inversion: A Powerful Tool for Generating Cellulose Acetate-AgNO3 Antimicrobial Membranes. Materials 2020, 13, 1560. [Google Scholar] [CrossRef] [PubMed]
- Salahshoori, I.; Seyfaee, A.; Babapoor, A. Recent advances in synthesis and applications of mixed matrix membranes. Synth. Sinter. 2021, 1, 1–27. [Google Scholar] [CrossRef]
- Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; del Castillo, L.F.; Compañ, V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers 2020, 12, 1861. [Google Scholar] [CrossRef]
- Subtil, E.L.; Ragio, R.A.; Lemos, H.G.; Scaratti, G.; García, J.; Le-Clech, P. Direct membrane filtration (DMF) of municipal wastewater by mixed matrix membranes (MMMs) filled with graphene oxide (GO): Towards a circular sanitation model. Chem. Eng. J. 2022, 441, 136004. [Google Scholar] [CrossRef]
- Zhou, W.-L.; Wu, T.; Du, Y.; Zhang, X.-H.; Chen, X.-C.; Li, J.-B.; Xie, H.; Qu, J.-P. Efficient fabrication of desert beetle-inspired micro/nano-structures on polypropylene/graphene surface with hybrid wettability, chemical tolerance, and passive anti-icing for quantitative fog harvesting. Chem. Eng. J. 2023, 453. [Google Scholar] [CrossRef]
- Ma, Y.; He, X.; Tang, S.; Xu, S.; Qian, Y.; Zeng, L.; Tang, K. Enhanced 2-D MOFs nanosheets/PIM-PMDA-OH mixed matrix membrane for efficient CO2 separation. J. Environ. Chem. Eng. 2022, 10, 107274. [Google Scholar] [CrossRef]
- Siddique, T.; Dutta, N.K.; Choudhury, N.R. Mixed-Matrix Membrane Fabrication for Water Treatment. Membranes 2021, 11, 557. [Google Scholar] [CrossRef]
- Koseoglu-Imer, D.Y.; Koyuncu, I. Fabrication and application areas of mixed matrix flat-sheet membranes. In Application of Nanotechnology in Membranes for Water Treatment; CRC Press: Boca Raton, FL, USA, 2018; pp. 49–66. [Google Scholar] [CrossRef]
- Azzaroni, O.; Lau, K.H.A. Layer-by-layer assemblies in nanoporous templates: Nano-organized design and applications of soft nanotechnology. Soft Matter 2011, 7, 8709–8724. [Google Scholar] [CrossRef]
- Lengert, E.V.; Koltsov, S.I.; Li, J.; Ermakov, A.V.; Parakhonskiy, B.V.; Skorb, E.V.; Skirtach, A.G. Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. Coatings 2020, 10, 1131. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Mathew, A.P. Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Co-Ord. Chem. Rev. 2021, 451, 214263. [Google Scholar] [CrossRef]
- Yoon, H.; Chang, M.; Jang, J. Sensing Behaviors of Polypyrrole Nanotubes Prepared in Reverse Microemulsions: Effects of Transducer Size and Transduction Mechanism. J. Phys. Chem. B 2006, 110, 14074–14077. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Kim, K.H.; Yoon, H.; Kim, H. Chemical Design of Functional Polymer Structures for Biosensors: From Nanoscale to Macroscale. Polymers 2018, 10, 551. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Han, U.; Choi, D.; Hong, J. Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: Design and applications. Biomater. Res. 2018, 22, 1–13. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, P.-F.; Li, X.; Gan, B.; Wang, L.; Song, X.; Park, H.-D.; Tang, C.Y. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. Environ. Sci. Technol. 2020, 54, 15563–15583. [Google Scholar] [CrossRef] [PubMed]
- Stucki, M.; Loepfe, M.; Stark, W.J. Porous Polymer Membranes by Hard Templating—A Review. Adv. Eng. Mater. 2017, 20. [Google Scholar] [CrossRef]
- Lee, J.-S.; Yu, J.-H.; Hwang, K.-H.; Nam, S.-H.; Boo, J.-H.; Yun, S.H. Patterning ITO by Template-Assisted Colloidal-Lithography for Enhancing Power Conversion Efficiency in Organic Photovoltaic. J. Nanosci. Nanotechnol. 2016, 16, 5024–5028. [Google Scholar] [CrossRef]
- Apel, P.Y. TRACK-ETCHING. In Encyclopedia of Membrane Science and Technology; Hoek, E.M.V., Tarabara, V.V., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Yeszhanov, A.B.; Korolkov, I.V.; Dosmagambetova, S.S.; Zdorovets, M.V.; Güven, O. Recent Progress in the Membrane Distillation and Impact of Track-Etched Membranes. Polymers 2021, 13, 2520. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Barsbay, M.; Zdorovets, M.V.; Zheltov, D.A.; Güven, O. Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III). Nanomaterials 2020, 10, 1552. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Kozlovskiy, A.L.; Zdorovets, M.V. Influence of deposition temperature on the structure and catalytic properties of the copper nanotubes composite membranes. Mater. Res. Express 2018, 5, 065041. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Mashentseva, A.; Güven, O.; Gorin, Y.G.; Zdorovets, M.V. Protein fouling of modified microporous PET track-etched membranes. Radiat. Phys. Chem. 2018, 151, 141–148. [Google Scholar] [CrossRef]
- Zhang, Y.; Almodovar-Arbelo, N.E.; Weidman, J.L.; Corti, D.S.; Boudouris, B.W.; Phillip, W.A. Fit-for-purpose block polymer membranes molecularly engineered for water treatment. npj Clean Water 2018, 1, 2. [Google Scholar] [CrossRef]
- Algarra, M.; Vázquez, M.I.; Alonso, B.; Casado, C.M.; Casado, J.; Benavente, J. Characterization of an engineered cellulose based membrane by thiol dendrimer for heavy metals removal. Chem. Eng. J. 2014, 253, 472–477. [Google Scholar] [CrossRef]
- Wang, L.; Ji, S.; Wang, N.; Zhang, R.; Zhang, G.; Li, J.-R. One-step self-assembly fabrication of amphiphilic hyperbranched polymer composite membrane from aqueous emulsion for dye desalination. J. Membr. Sci. 2013, 452, 143–151. [Google Scholar] [CrossRef]
- Krishnan, J.N.; Venkatachalam, K.R.; Ghosh, O.; Jhaveri, K.; Palakodeti, A.; Nair, N. Review of Thin Film Nanocomposite Membranes and Their Applications in Desalination. Front. Chem. 2022, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Ragunath, S. Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constrains and Challenges. Energies 2018, 11, 2997. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Msahel, A.; Galiano, F.; Serocki, M.; Ryl, J.; Ben Hamouda, S.; Hafiane, A.; Boczkaj, G.; Figoli, A. Towards azeotropic MeOH-MTBE separation using pervaporation chitosan-based deep eutectic solvent membranes. Sep. Purif. Technol. 2021, 281, 119979. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.-G.; Surat’Man, N.E.; Loh, X.J.; Li, Z. Microscopically tuning the graphene oxide framework for membrane separations: A review. Nanoscale Adv. 2021, 3, 5265–5276. [Google Scholar] [CrossRef]
- Feng, F.; Liang, C.-Z.; Wu, J.; Weber, M.; Maletzko, C.; Zhang, S.; Chung, T.-S. Polyphenylsulfone (PPSU)-Based Copolymeric Membranes: Effects of Chemical Structure and Content on Gas Permeation and Separation. Polymers 2021, 13, 2745. [Google Scholar] [CrossRef]
- Fernández-Castro, P.; Ortiz, A.; Gorri, D. Exploring the Potential Application of Matrimid® and ZIFs-Based Membranes for Hydrogen Recovery: A Review. Polymers 2021, 13, 1292. [Google Scholar] [CrossRef]
- Ming, W.S.; Jawad, Z.A.; Qasim, M. Grand Challenges in Membrane Process for Gas Separation. J. Appl. Membr. Sci. Technol. 2022, 26, 43–48. [Google Scholar] [CrossRef]
- Park, J.; Lee, S. Desalination Technology in South Korea: A Comprehensive Review of Technology Trends and Future Outlook. Membranes 2022, 12, 204. [Google Scholar] [CrossRef] [PubMed]
- Ethaib, S.; Al-Qutaifia, S.; Al-Ansari, N.; Zubaidi, S.L. Function of Nanomaterials in Removing Heavy Metals for Water and Wastewater Remediation: A Review. Environments 2022, 9, 123. [Google Scholar] [CrossRef]
- Zhao, Q.; An, Q.F.; Ji, Y.; Qian, J.; Gao, C. Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. J. Membr. Sci. 2011, 379, 19–45. [Google Scholar] [CrossRef]
- Flejszar, M.; Chmielarz, P. Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods—Current Status and Future Prospects. Materials 2020, 13, 999. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S. Engineered ‘Nanomaterials by design’ theoretical studies experimental validations current and future prospects. Exp. Theor. Nanotechnol. 2019, 301–364. [Google Scholar] [CrossRef]
- Yazid, A.F.; Mukhtar, H.; Nasir, R.; Mohshim, D.F. Incorporating Carbon Nanotubes in Nanocomposite Mixed-Matrix Membranes for Gas Separation: A Review. Membranes 2022, 12, 589. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.-L.; Zhao, Q.; An, Q.-F.; Shao, L.-L.; Lee, K.-R.; Xu, Z.-K.; Gao, C.-J. Novel separation membranes based on zwitterionic colloid particles: Tunable selectivity and enhanced antifouling property. J. Mater. Chem. A 2013, 1, 12213–12220. [Google Scholar] [CrossRef]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Clarizia, G.; Bernardo, P. Polyether Block Amide as Host Matrix for Nanocomposite Membranes Applied to Different Sensitive Fields. Membranes 2022, 12, 1096. [Google Scholar] [CrossRef]
- Raheem, I.; Mubarak, N.M.; Karri, R.R.; Solangi, N.H.; Jatoi, A.S.; Mazari, S.A.; Khalid, M.; Tan, Y.H.; Koduru, J.R.; Malafaia, G. Rapid growth of MXene-based membranes for sustainable environmental pollution remediation. Chemosphere 2023, 311. [Google Scholar] [CrossRef]
- Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A.P.; Tong, T.; Warsinger, D.M.; Elimelech, M. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges. Energy Environ. Sci. 2018, 11, 1177–1196. [Google Scholar] [CrossRef]
- Janczura, M.; Luliński, P.; Sobiech, M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. Materials 2021, 14, 1850. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, F.; Yang, Y.; Ge, B.; Meng, F. Research and application progress of lignin-based composite membrane. J. Polym. Eng. 2021, 41, 245–258. [Google Scholar] [CrossRef]
- Meng, X.; Meng, S.; Liu, Y. The Limitations in Current Studies of Organic Fouling and Future Prospects. Membranes 2021, 11, 922. [Google Scholar] [CrossRef] [PubMed]
- Polisetti, V.; Ray, P. Thin film composite nanofiltration membranes with polystyrene sodium sulfonate–polypiperazinetrimesamide semi-interpenetrating polymer network active layer. J. Appl. Polym. Sci. 2020, 137, 49351. [Google Scholar] [CrossRef]
- Ishak, N.A.I.M.; Kamarudin, S.K.; Timmiati, S.N. Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Mater. Res. Express 2019, 6, 112004. [Google Scholar] [CrossRef]
- Saraswathi, M.S.S.A.; Nagendran, A.; Rana, D. Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: A review. J. Mater. Chem. A 2019, 7, 8723–8745. [Google Scholar] [CrossRef]
- Rowley, J.; Abu-Zahra, N.H. Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane) APTES-Fe3O4 nanoparticles for As(V) removal from water. J. Environ. Chem. Eng. 2019, 7, 102875. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Y.; Walter, E.; Zong, M.; Wang, Y.; Zhang, X.; Qafoku, O.; Wang, Z.; Rosso, K.M. Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles. Environ. Sci. Technol. 2019, 53, 10197–10207. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Sharifi, S.; Ahmadian, E.; Eftekhari, A.; Adibkia, K.; Lotfipour, F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin. Drug Deliv. 2019, 16, 331–345. [Google Scholar] [CrossRef]
- Norizan, M.N.; Moklis, M.H.; Demon, S.Z.N.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Adv. 2020, 10, 43704–43732. [Google Scholar] [CrossRef] [PubMed]
- Ventura, C.; Pinto, F.; Lourenço, A.F.; Ferreira, P.J.T.; Louro, H.; Silva, M.J. On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models. Cellulose 2020, 27, 5509–5544. [Google Scholar] [CrossRef]
- Wen, Y.; Yuan, J.; Ma, X.; Wang, S.; Liu, Y. Polymeric nanocomposite membranes for water treatment: A review. Environ. Chem. Lett. 2019, 17, 1539–1551. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, H.; Shen, W.; Xu, G.; Ma, B.; Ji, X. Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability. Cem. Concr. Compos. 2018, 92, 7–17. [Google Scholar] [CrossRef]
- Cserjési, P.; Nemestóthy, N.; Bélafi-Bakó, K. Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J. Membr. Sci. 2010, 349, 6–11. [Google Scholar] [CrossRef]
- Ng, T.Y.S.; Viriya, V.; Chew, T.L.; Yeong, Y.F.; Ahmad, A.L.; Ho, C.-D.; Jawad, Z.A. Optimization of CO2/H2 Separation over Ba-SAPO-34 Zeolite Membrane Synthesized by Microwave Heating. Membranes 2022, 12, 850. [Google Scholar] [CrossRef]
- Shao, P.; Huang, R. Polymeric membrane pervaporation. J. Membr. Sci. 2007, 287, 162–179. [Google Scholar] [CrossRef]
- Wang, Q.; Li, N.; Bolto, B.; Hoang, M.; Xie, Z. Desalination by pervaporation: A review. Desalination 2016, 387, 46–60. [Google Scholar] [CrossRef]
- Cheng, C.; Shen, L.; Yu, X.; Yang, Y.; Li, X.; Wang, X. Robust construction of a graphene oxide barrier layer on a nanofibrous substrate assisted by the flexible poly(vinylalcohol) for efficient pervaporation desalination. J. Mater. Chem. A 2017, 5, 3558–3568. [Google Scholar] [CrossRef]
- Cao, X.; Wang, K.; Feng, X. Removal of phenolic contaminants from water by pervaporation. J. Membr. Sci. 2021, 623, 119043. [Google Scholar] [CrossRef]
- Liang, B.; Pan, K.; Li, L.; Giannelis, E.P.; Cao, B. High performance hydrophilic pervaporation composite membranes for water desalination. Desalination 2014, 347, 199–206. [Google Scholar] [CrossRef]
- Zeng, H.; He, S.; Hosseini, S.S.; Zhu, B.; Shao, L. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Adv. Membr. 2021, 2, 100015. [Google Scholar] [CrossRef]
- Cha-Umpong, W.; Mayyas, M.; Razmjou, A.; Chen, V. Modification of GO-based pervaporation membranes to improve stability in oscillating temperature operation. Desalination 2021, 516, 115215. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, X.; Li, C.; Hao, X.; Wang, Y.; Guan, G. ZIF-8 incorporated polyether block amide membrane for phenol permselective pervaporation with high efficiency. Sep. Purif. Technol. 2016, 166, 252–261. [Google Scholar] [CrossRef]
- Gou, M.; Zhu, W.; Sun, Y.; Guo, R. Introducing two-dimensional metal-organic frameworks with axial coordination anion into Pebax for CO2/CH4 separation. Sep. Purif. Technol. 2021, 259, 118107. [Google Scholar] [CrossRef]
- Lin, R.; Hernandez, B.V.; Ge, L.; Zhu, Z. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces. J. Mater. Chem. A 2017, 6, 293–312. [Google Scholar] [CrossRef]
- Wang, H.; He, S.; Qin, X.; Li, C.; Li, T. Interfacial Engineering in Metal–Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes. J. Am. Chem. Soc. 2018, 140, 17203–17210. [Google Scholar] [CrossRef]
- Kandambeth, S.; Biswal, B.P.; Chaudhari, H.D.; Rout, K.C.; Kunjattu, H.S.; Mitra, S.; Karak, S.; Das, A.; Mukherjee, R.; Kharul, U.K.; et al. Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes. Adv. Mater. 2016, 29, 1603945. [Google Scholar] [CrossRef]
- Song, S.; Zhao, M.; Guo, Z.; Ren, Y.; Wang, J.; Liang, X.; Pu, Y.; Wang, S.; Ma, H.; Wang, X.; et al. Mixed matrix composite membranes with MOF-protruding structure for efficient CO2 separation. J. Membr. Sci. 2023, 669, 121340. [Google Scholar] [CrossRef]
- Ying, Y.; Rouhani, H.; Wang, D.; Zhao, D. Two-Dimensional-Materials Membranes for Gas Separations. In Two-Dimensional-Materials-Based Membranes: Preparation, Characterization, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 173–220. [Google Scholar]
- Moon, J.-H.; Bae, J.-H.; Han, Y.-J.; Lee, C.-H. Adsorbent/membrane hybrid (AMH) system for hydrogen separation: Synergy effect between zeolite 5A and silica membrane. J. Membr. Sci. 2010, 356, 58–69. [Google Scholar] [CrossRef]
- Lu, G.; da Costa, J.D.; Duke, M.; Giessler, S.; Socolow, R.; Williams, R.; Kreutz, T. Inorganic membranes for hydrogen production and purification: A critical review and perspective. J. Colloid Interface Sci. 2007, 314, 589–603. [Google Scholar] [CrossRef] [PubMed]
- David, E.; Kopac, J. Devlopment of palladium/ceramic membranes for hydrogen separation. Int. J. Hydrogen Energy 2011, 36, 4498–4506. [Google Scholar] [CrossRef]
- Shi, L.; Goldbach, A.; Xu, H. High-flux H2 separation membranes from (Pd/Au)n nanolayers. Int. J. Hydrogen Energy 2011, 36, 2281–2284. [Google Scholar] [CrossRef]
- Nagata, K.; Miyamoto, M.; Watabe, T.; Fujioka, Y.; Yogo, K. Preparation of Pore-fill-type Palladium–Porous Alumina Composite Membrane for Hydrogen Separation. Chem. Lett. 2011, 40, 19–21. [Google Scholar] [CrossRef]
- Mansor, E.S.; Amer, A.M.; Abelsalam, S.S.; Radwan, A.; Abdel-Monem, M.O. Silver Oxide Nanoparticles-Modified Poly Vinyl Chloride Membranes to Enhance the Antibacterial Properties. Egypt. Acad. J. Biol. Sci. G. Microbiol. 2022, 14, 193–204. [Google Scholar] [CrossRef]
- Yu, K.; He, T. Silver-Nanowire-Based Elastic Conductors: Preparation Processes and Substrate Adhesion. Polymers 2023, 15, 1545. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhu, Y. Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices. Adv. Mater. 2015, 27, 1480–1511. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khdary, N.H.; Almuarqab, B.T.; El Enany, G. Nanoparticle-Embedded Polymers and Their Applications: A Review. Membranes 2023, 13, 537. https://doi.org/10.3390/membranes13050537
Khdary NH, Almuarqab BT, El Enany G. Nanoparticle-Embedded Polymers and Their Applications: A Review. Membranes. 2023; 13(5):537. https://doi.org/10.3390/membranes13050537
Chicago/Turabian StyleKhdary, Nezar H., Basha T. Almuarqab, and Gaber El Enany. 2023. "Nanoparticle-Embedded Polymers and Their Applications: A Review" Membranes 13, no. 5: 537. https://doi.org/10.3390/membranes13050537
APA StyleKhdary, N. H., Almuarqab, B. T., & El Enany, G. (2023). Nanoparticle-Embedded Polymers and Their Applications: A Review. Membranes, 13(5), 537. https://doi.org/10.3390/membranes13050537