Modified LIX®84I-Based Polymer Inclusion Membranes for Facilitating the Transport Flux of Cu(II) and Variations of Their Physical–Chemical Characteristics
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Chemicals
2.2. Preparation of PIMs
2.3. Transport Experiments
2.4. ATR-FTIR Spectra Studies
2.5. Contract Angles
2.6. Electrical Impedance Spectroscopy Measurements
3. Results and Discussion
3.1. Effect of Different Modifiers
3.2. Effects of V10 Content on the Transport Behaviors
3.3. ATR-FTIR Analysis
3.4. Contact Angle Analysis
3.5. EIS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Swain, B.; Sarangi, K.; Das, R.P. Effect of different anions on separation of copper and zinc by supported liquid mem-brane using TOPS-99 as mobile carrier. J. Membr. Sci. 2004, 243, 189–194. [Google Scholar] [CrossRef]
- Agrawal, A.; Sahu, K.K. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. J. Hazard. Mater. 2009, 171, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Pospiech, B. Synergistic Solvent Extraction and Transport of Zn(II) and Cu(II) across Polymer Inclusion Membranes with a Mixture of TOPO and Aliquat 336. Sep. Sci. Technol. 2014, 49, 1706–1712. [Google Scholar] [CrossRef]
- Neplenbroek, A.; Bargeman, D.; Smolders, C. Supported liquid membranes: Instability effects. J. Membr. Sci. 1992, 67, 121–132. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Mornane, P.; Potter, I.D.; Perera, J.M.; Cattrall, R.W.; Kolev, S.D. Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Membr. Sci. 2006, 281, 7–41. [Google Scholar] [CrossRef]
- Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Membr. Sci. 2012, 415–416, 9–23. [Google Scholar] [CrossRef]
- Permogorov, N. Membrane Technologies for Water Treatment: Removal of Toxic Trace Elements with Emphasis on Arsenic, Fluoride and Uranium. Johns. Matthey Technol. Rev. 2016, 60, 273–276. [Google Scholar] [CrossRef]
- Fontàs, C.; Tayeb, R.; Tingry, S.; Hidalgo, M.; Seta, P. Transport of platinum(IV) through supported liquid membrane (SLM) and polymeric plasticized membrane (PPM). J. Membr. Sci. 2005, 263, 96–102. [Google Scholar] [CrossRef]
- Alguacil, F.J. Mechanistic study of active transport of copper(II) from ammoniacal/ammonium carbonate medium using LIX 973N as a carrier across a liquid membrane. Hydrometallurgy 2001, 61, 177–183. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Sastre, A.M. Mechanistic study of active transport of copper (II) using LIX 54 across a liquid membrane. J. Chem. Technol. Biotechnol. 2015, 75, 577–582. [Google Scholar] [CrossRef]
- Alguacil, J.F.; Alonso, M.; Sastre, M.A. Copper separation from nitrate/nitric acid media using Acorga M5640 extractant. Part II. Supported liquid membrane study. Chem. Eng. J. 2002, 85, 265–272. [Google Scholar] [CrossRef]
- Rodríguez de San Miguel, E.; Hernández-Andaluz, A.M.; Bañuelos, J.G.; Saniger, J.M.; Aguilar, J.C.; de Gyves, J. LIX®-loaded polymer inclusion membrane for copper(II) transport 1. Composition-performance relationships through membrane characterization and solubility diagrams. Mater. Sci. Eng. A 2006, 434, 30–38. [Google Scholar] [CrossRef]
- Wang, D.; Hu, J.; Li, Y.; Fu, M.; Liu, D.; Chen, Q. Evidence on the 2-nitrophenyl octyl ether (NPOE) facilitating Copper(II) transport through polymer inclusion membranes. J. Membr. Sci. 2016, 501, 228–235. [Google Scholar] [CrossRef]
- Miguel, E.R.D.S.; Aguilar, J.C.; Gyves, J.D. Structural effects on metal ion migration across polymer inclusion mem-branes: Dependence of transport profiles on nature of active plasticizer. J. Membr. Sci. 2008, 307, 105–116. [Google Scholar] [CrossRef]
- Pereira, N.; John, A.S.; Cattrall, R.W.; Perera, J.M.; Kolev, S.D. Influence of the composition of polymer inclusion mem-branes on their homogeneity and flexibility. Desalination 2009, 236, 327–333. [Google Scholar] [CrossRef]
- Figoli, A.; Hoinkis, J.; Bundschuh, J. Membrane Technologies for Water Treatment: Removal of Toxic Trace Elements; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Sears, J.K.; Darby, J.R. The Technology of Plasticizers; Wiley: Hoboken, NJ, USA, 1982. [Google Scholar]
- de Gyves, J.; Hernández-Andaluz, A.M.; Miguel, E.R.d.S. LIX®-loaded polymer inclusion membrane for copper(II) transport 2. Optimization of the efficiency factors (permeability, selectivity, and stability) for LIX® 84-I. J. Membr. Sci. 2006, 268, 142–149. [Google Scholar] [CrossRef]
- Hu, F.; Hu, H.; Tang, J.; Qiu, X.; Jin, W.; Hu, J. Plasticization-induced oriented micro-channels within polymer inclusion membranes for facilitating Cu(II) transport. J. Mol. Liq. 2020, 301, 112457. [Google Scholar] [CrossRef]
- León, L.; León, G.; Senent, J.; Guzmán, M.A. Kinetic study of Copper(II) simultaneous extraction/stripping from aqueous solutions by bulk liquid membranes using coupled transport mechanisms. Metals 2016, 6, 212. [Google Scholar] [CrossRef]
- Fortunato, R.; Branco, L.C.; Afonso, C.A.M.; Benavente, J.; Crespo, J.G. Electrical impedance spectroscopy characterisation of supported ionic liquid membranes. J. Membr. Sci. 2006, 270, 42–49. [Google Scholar] [CrossRef]
- Benavente, J. Use of Impedance Spectroscopy for Characterization of Modified Membranes; CRC Press: Boca Raton, FL, USA, 2012; pp. 21–40. [Google Scholar] [CrossRef]
- Majdan, M.; Sperline, R.P.; Gu, W.-G.; Yu, W.-H.; Freiser, H. Interaction of long-chain alcohol “modifiers” with lix solvent extraction reagents. Solvent Extr. Ion Exch. 1989, 7, 987–1005. [Google Scholar] [CrossRef]
- Sharaf, M.; Yoshida, W.; Kubota, F.; Kolev, S.D.; Goto, M. A polymer inclusion membrane composed of the binary carrier PC-88A and Versatic 10 for the selective separation and recovery of Sc. RSC Adv. 2018, 8, 8631–8637. [Google Scholar] [CrossRef] [PubMed]
- Mortaheb, H.R.; Zolfaghari, A.; Mokhtarani, B.; Amini, M.H.; Mandanipour, V. Study on removal of cadmium by hybrid liquid membrane process. J. Hazard. Mater. 2010, 177, 660–667. [Google Scholar] [CrossRef]
- Kaya, A.; Alpoguz, H.K.; Yilmaz, A. Application of Cr(VI) Transport through the Polymer Inclusion Membrane with a New Synthesized Calix[4]arene Derivative. Ind. Eng. Chem. Res. 2013, 52, 5428–5436. [Google Scholar] [CrossRef]
- Ochoa, N.; Masuelli, M.; Marchese, J. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. J. Membr. Sci. 2003, 226, 203–211. [Google Scholar] [CrossRef]
- Vera, R.; Gelde, L.; Anticó, E.; Martínez de Yuso, M.V.; Benavente, J.; Fontàs, C. Tuning physicochemical, electrochemical and transport characteristics of polymer inclusion membrane by varying the counter-anion of the ionic liquid Aliquat 336. J. Membr. Sci. 2017, 529, 87–94. [Google Scholar] [CrossRef]
- O’Rourke, M.; Duffy, N.; Marco, R.D.; Potter, I. Electrochemical impedance spectroscopy-a simple method for the char-acterization of polymer inclusion membranes containing aliquat 336. Membranes 2011, 1, 132–148. [Google Scholar] [CrossRef]
- Kebiche-Senhadji, O.; Tingry, S.; Seta, P.; Benamor, M. Selective extraction of Cr(VI) over metallic species by polymer inclusion membrane (PIM) using anion (Aliquat 336) as carrier. Desalination 2010, 258, 59–65. [Google Scholar] [CrossRef]
- Blythe, D.B.T. Electrical Properties of Polymers; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Buck, R.P.; Ciani, S. Electroanalytical chemistry of membranes. CRC Crit. Rev. Anal. Chem. 2008, 5, 323–420. [Google Scholar]
- Fontàs, C.; Tayeb, R.; Dhahbi, M.; Gaudichet, E.; Thominette, F.; Roy, P.; Steenkeste, K.; Fontaine-Aupart, M.-P.; Tingry, S.; Tronel-Peyroz, E.; et al. Polymer inclusion membranes: The concept of fixed sites membrane revised. J. Membr. Sci. 2007, 290, 62–72. [Google Scholar] [CrossRef]
Modifier | Extraction (%) | Recovery (%) | |||
---|---|---|---|---|---|
D2EHPA | 1.31 | 0.55 | 0.29 | 62.75 | 37.96 |
Ethanol | 0.90 | 1.17 | 0.37 | 84.08 | 81.78 |
V10 | 1.00 | 1.01 | 0.37 | 98.21 | 97.02 |
None | 0.69 | 0.92 | 0.29 | 53.51 | 45.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, F.; Huang, Y.; Huang, Y.; Tang, J.; Hu, J. Modified LIX®84I-Based Polymer Inclusion Membranes for Facilitating the Transport Flux of Cu(II) and Variations of Their Physical–Chemical Characteristics. Membranes 2023, 13, 550. https://doi.org/10.3390/membranes13060550
Hu F, Huang Y, Huang Y, Tang J, Hu J. Modified LIX®84I-Based Polymer Inclusion Membranes for Facilitating the Transport Flux of Cu(II) and Variations of Their Physical–Chemical Characteristics. Membranes. 2023; 13(6):550. https://doi.org/10.3390/membranes13060550
Chicago/Turabian StyleHu, Fang, Yifa Huang, Yanting Huang, Junming Tang, and Jiugang Hu. 2023. "Modified LIX®84I-Based Polymer Inclusion Membranes for Facilitating the Transport Flux of Cu(II) and Variations of Their Physical–Chemical Characteristics" Membranes 13, no. 6: 550. https://doi.org/10.3390/membranes13060550
APA StyleHu, F., Huang, Y., Huang, Y., Tang, J., & Hu, J. (2023). Modified LIX®84I-Based Polymer Inclusion Membranes for Facilitating the Transport Flux of Cu(II) and Variations of Their Physical–Chemical Characteristics. Membranes, 13(6), 550. https://doi.org/10.3390/membranes13060550