A Flexible 8-in-1 Microsensor Embedded in Proton Battery Stack for Real-Time Microscopic Measurements
Abstract
:1. Introduction
2. Process of Flexible 8-in-1 Microsensor
2.1. Flexible Printed Circuit Design for Flexible 8-in-1 Microsensor
2.2. Back-End Integration of Flexible 8-in-1 Microsensor
3. Correction of Flexible 8-in-1 Microsensor
3.1. Temperature Correction of Flexible 8-in-1 Microsensor
3.2. Humidity Correction of Flexible 8-in-1 Microsensor
3.3. Flow Correction of Flexible 8-in-1 Microsensor
3.4. Hydrogen Correction of Flexible 8-in-1 Microsensor
3.5. Oxygen Correction of Flexible 8-in-1 Microsensor
3.6. Clamping Pressure Correction of Flexible 8-in-1
3.7. Voltage and Current Correction of the Flexible 8-in-1 Microsensor
4. Flexible 8-in-1 Microsensor Embedded in Proton Battery Stack for Real-Time Measurement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Full Name | Abbreviation |
micro-electro-mechanical systems | MEMS |
physical vapor deposition | PVD |
polyimide | PI |
proton exchange membrane fuel cell | PEMFC |
membrane electrode assembly | MEA |
Flexible Printed Circuit | FPC |
Anisotropic Conductive Film | ACF |
National Instruments | NI |
References
- Su, Z.; Chen, J.; Stansby, J.; Jia, C.; Zhao, T.; Tang, J.; Fang, Y.; Rawal, A.; Ho, J.; Zhao, C. Hydrogen-bond disrupting electrolytes for fast and stable proton batteries. Nano Micro Small 2022, 18, 2201449–2201459. [Google Scholar] [CrossRef] [PubMed]
- Niroumand, A.M.; Homayouni, H.; Goransson, G.; Olfert, M.; Eikerling, M. In-situ diagnostic tools for hydrogen transfer leak characterization in PEM fuel cell stacks part III: Manufacturing applications. J. Power Sources 2020, 448, 227359–227367. [Google Scholar] [CrossRef]
- Andrews, J.; Niya, S.M.R.; Ojha, R. Electrochemical hydrogen storage in porous carbons with acidic electrolytes: Uncovering the potential. Curr. Opin. Electrochem. 2022, 31, 100850–100854. [Google Scholar] [CrossRef]
- Seifi, S.; Masoum, S. Significantly enhanced electrochemical hydrogen storage performance of biomass nanocomposites from Pistacia Atlantica modified by CuO nanostructures with different morphologies. Int. J. Hydrogen Energy 2021, 46, 8078–8090. [Google Scholar] [CrossRef]
- Han, J.H.; Kim, S.; Choi, J.; Kang, S.; Pak, Y.K.; Pak, J.J. Development of multi-well-based electrochemical dissolved oxygen sensor array. Sens. Actuators B Chem. 2020, 306, 127465–127473. [Google Scholar] [CrossRef]
- Reshetenko, T. Determination of oxygen mass transport resistance in proton exchange membrane fuel cells with an open flow field architecture. Electrochim. Acta 2021, 387, 138529–138540. [Google Scholar] [CrossRef]
- Liebisch, F.; Weltin, A.; Marzioch, J.; Urban, G.A.; Kieninger, J. Zero-consumption Clark-type microsensor for oxygen monitoring in cell culture and organ-on-chip systems. Sens. Actuators B Chem. 2020, 322, 128652–128660. [Google Scholar] [CrossRef]
- Zhou, D.; Cai, S.; Sun, H.; Zhong, G.; Zhang, H.; Sun, D.; Su, F.; Deng, M.; Tian, Y. Diatom frustules based dissolved oxygen sensor with superhydrophobic surface. Sens. Actuators B Chem. 2022, 371, 132549–132558. [Google Scholar] [CrossRef]
- Movahedi, M.; Ramiar, A.; Ranjber, A.A. 3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field. Energy 2021, 142, 617–632. [Google Scholar] [CrossRef]
- Ambardekar, V.; Bhowmick, T.; Bandyopadhyay, P.P. Understanding on the hydrogen detection of plasma sprayed tin oxide/tungsten oxide (SnO2/WO3) sensor. Int. J. Hydrogen Energy 2022, 47, 15120–15131. [Google Scholar] [CrossRef]
- Chen, K.; Hou, Y.; Jiang, C.; Pan, X.; Hao, D. Experimental investigation on statistical characteristics of cell voltage distribution for a PEMFC stack under dynamic driving cycle. Int. J. Hydrogen Energy 2021, 46, 38469–38481. [Google Scholar] [CrossRef]
- Liu, P.; Xu, S.; Fu, J.; Liu, C. Experimental investigation on the voltage uniformity for a PEMFC stack with different dynamic loading strategies. Int. J. Hydrogen Energy 2020, 45, 26490–26500. [Google Scholar] [CrossRef]
- Shen, J.; Du, C.; Yan, F.; Chen, B.; Tu, Z. Experimental study on the dynamic performance of a power system with dual air-cooled PEMFC stacks. Appl. Energy 2022, 326, 120025–120034. [Google Scholar] [CrossRef]
- Li, M.; Yin, H.; Ding, T.; Zhao, J.; Gao, J.; Chen, H. Air flow rate and pressure control approach for the air supply subsystems in PEMFCs. ISA Trans. 2022, 128, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, N.; Kõrgesaar, M. Analytical approach to investigate the effect of gas channel draft angle on the performance of PEMFC and species distribution. Int. J. Heat Mass Transf. 2020, 152, 119529–119545. [Google Scholar] [CrossRef]
- Hiramitsu, Y.; Kobayashi, K.; Hori, M. Enhanced water management via the optimization of cathode microporous layer using 3D graphene frameworks for direct methanol fuel cell. J. Power Sources 2020, 451, 227800–227809. [Google Scholar]
- Carcadea, E.; Varlam, M.; Ismail, M.; Ingham, D.B.; Marinoiu, A.; Raceanu, M.; Jianu, C.; Patularu, L.; Ebrasua, D.I. PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers. Int. J. Hydrogen Energy 2020, 45, 7968–7980. [Google Scholar] [CrossRef]
- Vincent, I.; Lee, E.C.; Kim, H.M. Solutions to the water flooding problem for unitized regenerative fuel cells: Status and perspectives. RSC Adv. 2020, 10, 16844–16860. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Qi, R.; Li, T.; Zhang, L.Z. Durability analysis and degradation mechanism for an electrolytic air dehumidifier based on PEM. Int. J. Hydrogen Energy 2020, 45, 3971–3985. [Google Scholar] [CrossRef]
- Lee, C.Y.; Chen, C.H.; Chien, Y.H.; Huang, Z.Y. A proton battery stack real-time monitor with a flexible six-in-one microsensor. Membranes 2022, 12, 779. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Chen, C.-H.; Chuang, S.-M.; Yang, C.-Y.; Hsu, J.-Y. A Flexible 8-in-1 Microsensor Embedded in Proton Battery Stack for Real-Time Microscopic Measurements. Membranes 2023, 13, 573. https://doi.org/10.3390/membranes13060573
Lee C-Y, Chen C-H, Chuang S-M, Yang C-Y, Hsu J-Y. A Flexible 8-in-1 Microsensor Embedded in Proton Battery Stack for Real-Time Microscopic Measurements. Membranes. 2023; 13(6):573. https://doi.org/10.3390/membranes13060573
Chicago/Turabian StyleLee, Chi-Yuan, Chia-Hung Chen, Sheng-Ming Chuang, Chin-Yuan Yang, and Jia-Yu Hsu. 2023. "A Flexible 8-in-1 Microsensor Embedded in Proton Battery Stack for Real-Time Microscopic Measurements" Membranes 13, no. 6: 573. https://doi.org/10.3390/membranes13060573
APA StyleLee, C. -Y., Chen, C. -H., Chuang, S. -M., Yang, C. -Y., & Hsu, J. -Y. (2023). A Flexible 8-in-1 Microsensor Embedded in Proton Battery Stack for Real-Time Microscopic Measurements. Membranes, 13(6), 573. https://doi.org/10.3390/membranes13060573