Phase Equilibria, Solidified Microstructure, and Hydrogen Transport Behaviour in the V-Ti-Co System
Abstract
:1. Introduction
2. Experimental and Numerical Procedures
2.1. Materials and Methods
2.2. Phase Diagram Calculation Model and Algorithm
2.2.1. Thermodynamic Model
2.2.2. Calculation Algorithm
3. Results
3.1. Calculation of Phase Diagram and Experimental Verification
3.1.1. Calculation of Phase Diagram
- U1: (L + TiCo → TiCo2 (h) + TiCo2 (c)), 1512 K;
- U2: (L + sigma (CoV) → bcc − (V, Ti) + TiCo), 1509 K;
- U3: (L + TiCo → TiCo2 (h) + sigma (CoV)), 1508 K;
- U4: (L + TiCo3 → TiCo2 (h) + fcc), 1421 K;
- P1: (L + TiCo + bcc − (V, Ti) → Ti2Co), 1394 K.
3.1.2. Experimental Verification
3.2. Solidification of VxTi50Co50−x Alloy
3.3. Microstructure of VxTi50Co50−x Alloys
3.4. Hydrogen Transport Performance of VxTi50Co50−x Alloys
3.5. The Compositional Window Suitable for Hydrogen Permeation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
J | hydrogen permeation flux [mol H2 m−1s−1] |
Φ | hydrogen permeability [mol H2 m−1s−1Pa−0.5] |
L | membrane thickness [m] |
Pu/Pd | pressure difference of the upstream/downstream sides [Pa] |
Gi | Gibbs energy [kJ/mol] |
enthalpy of i under standard pressure [kJ/mol] | |
A–J | calculated constants. |
R | gas constant |
mole fractions of the pure element | |
the ith Redlich-Kister parameter | |
the ith Curie temperature |
References
- Serra, E.; Kemali, M.; Ross, D.K.; Perujo, A. Hydrogen and Deuterium in Pd-25 Pct Ag Alloy: Permeation, Diffusion, Solubilization, and Surface Reaction. Metall. Mater. Trans. A 1998, 29, 1023–1028. [Google Scholar] [CrossRef]
- McKinley, D.L.; Va, W. Dzdiffusion Coefficient for Hydrogen through the Barrier K = solubility Constant for Hydrogen in the Barrier. Theor. Appl. Fract. Mec. 2020, 110, 102803. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yukawa, H.; Suzuki, A.; Nambu, T.; Matsumoto, Y.; Murata, Y. Alloying Effects on Hydrogen Permeability of V without Catalytic Pd Overlayer. J. Alloys Compd. 2015, 645, S275–S279. [Google Scholar] [CrossRef]
- Dolan, M.D. Non-Pd BCC Alloy Membranes for Industrial Hydrogen Separation. J. Membr. Sci. 2010, 362, 12–28. [Google Scholar] [CrossRef]
- Holleck, G.L. Diffusion and Solubility of Hydrogen in Palladium and Palladium-Silver Alloys. J. Phys. Chem. 1970, 74, 503–511. [Google Scholar] [CrossRef]
- Wang, Y.-I.; Suh, J.-Y.; Lee, Y.-S.; Shim, J.-H.; Fleury, E.; Cho, Y.W.; Koh, S.-U. Direct Measurement of Hydrogen Diffusivity through Pd-Coated Ni-Based Amorphous Metallic Membranes. J. Membr. Sci. 2013, 436, 195–201. [Google Scholar] [CrossRef]
- Yukawa, H.; Zhang, G.X.; Watanabe, N.; Morinaga, M.; Nambu, T.; Matsumoto, Y. Analysis of Hydrogen Diffusion Coefficient during Hydrogen Permeation through Niobium and Its Alloys. J. Alloys Compd. 2009, 476, 102–106. [Google Scholar] [CrossRef]
- Tang, H.X.; Ishikawa, K.; Aoki, K. Effect of Elements Addition on Hydrogen Permeability and Ductility of Nb40Ti18Zr12Ni30 Alloy. J. Alloys Compd. 2008, 461, 263–266. [Google Scholar] [CrossRef]
- Nishimura, C.; Komaki, M.; Hwang, S.; Amano, M. V–Ni Alloy Membranes for Hydrogen Purification. J. Alloys Compd. 2002, 330–332, 902–906. [Google Scholar] [CrossRef]
- Harumoto, T.; Nakamura, Y.; Shi, J. Correlation among Hydrogenation, Magnetoelastic Coupling, Magnetic Anisotropy, and Magnetoresistance in Magnetostrictive, Hydrogen-Absorbing Palladium-Cobalt Alloy Films for Hydrogen Sensing. Int. J. Hydrogen Energy 2021, 46, 30204–30215. [Google Scholar] [CrossRef]
- Hashi, K.; Ishikawa, K.; Matsuda, T.; Aoki, K. Microstructure and Hydrogen Permeability in Nb–Ti–Co Multiphase Alloys. J. Alloys Compd. 2006, 425, 284–290. [Google Scholar] [CrossRef]
- Huang, F.; Li, X.; Shan, X.; Guo, J.; Gallucci, F.; Van Sint Annaland, M.; Liu, D. Hydrogen Transport through the V-Cr-Al Alloys: Hydrogen Solution, Permeation and Thermal-Stability. Sep. Purif. Technol. 2020, 240, 116654. [Google Scholar] [CrossRef]
- Mishra, S.; Luhadiya, N.; Kundalwal, S.I. Atomistic Insights into the H2 Adsorption and Desorption Behavior of Novel Li-Functionalized Polycrystalline CNTs. Carbon 2023, 207, 23–35. [Google Scholar] [CrossRef]
- Yan, E.; Huang, H.; Sun, S.; Zou, Y.; Chu, H.; Sun, L. Development of Nb-Ti-Co Alloy for High-Performance Hydrogen Separating Membrane. J. Membr. Sci. 2018, 565, 411–424. [Google Scholar] [CrossRef]
- Ruan, J.J.; Wang, C.P.; Zhao, C.C.; Yang, S.Y.; Yang, T.; Liu, X.J. Experimental Investigation of Phase Equilibria and Microstructure in the Co–Ti–V Ternary System. Intermetallics 2014, 49, 121–131. [Google Scholar] [CrossRef]
- Yan, E.; Zhou, Z.; Huang, R.; Zhang, K.; Zhang, S.; Wang, Y.; Chen, Y.; Zou, Y.; Chu, H.; Zhang, H.; et al. Microstructure and Hydrogen Transport Behaviour of Nb5Ti58Fe35M2 Alloy Membranes. J. Alloys Compd. 2023, 958, 170520. [Google Scholar] [CrossRef]
- Yan, E.; Huang, H.; Min, R.; Zhao, P.; Misra, R.D.K.; Huang, P.; Xu, F.; Sun, L. Effect of Pd Overlayer and Mixed Gases on Hydrogen Permeation of Pd/Nb30Hf35Co35/Pd Composite Membranes. Int. J. Hydrogen Energy 2018, 43, 14466–14477. [Google Scholar] [CrossRef]
- Yan, E.; Min, R.; Huang, H.; Zhao, P.; Huang, P.; Zou, Y.; Chu, H.; Sun, S.; Sun, L. Multiphase Nb–TiCo Alloys: The Significant Impact of Surface Corrosion on the Structural Stability and Hydrogen Permeation Behaviour. Int. J. Hydrogen Energy 2019, 44, 16684–16697. [Google Scholar] [CrossRef]
- Dinsdale, A.T. SGTE Data for Pure Elements. Calphad 1991, 15, 317–425. [Google Scholar] [CrossRef]
- Williams, R.O.; Brynestad, J. Models for Binary and Multicomponent Solutions a New Prospectus. Calphad 1982, 6, 25–38. [Google Scholar] [CrossRef]
- Yan, E.; Li, X.; Rettenmayr, M.; Liu, D.; Su, Y.; Guo, J.; Xu, D.; Fu, H. Design of Hydrogen Permeable Nb–Ni–Ti Alloys by Correlating the Microstructures, Solidification Paths and Hydrogen Permeability. Int. J. Hydrogen Energy 2014, 39, 3505–3516. [Google Scholar] [CrossRef]
- Redlich, O.; Kister, A.T. Thermodynamics of Nonelectrolyte Solutions-x-y-t relations in a binary system. Ind. Eng. Chem 1948, 40, 341–345. [Google Scholar] [CrossRef]
- Peng, M.; Qiao, Z.; Mikula, A. Comparison between Calculated and Measured Thermodynamic Data of Liquid (Ag, Au, Cu)-Sn-Zn Alloys. Calphad 1998, 22, 459–468. [Google Scholar] [CrossRef]
- Wu, L.; Zeng, Y.; Pan, Y.; Du, Y.; Peng, Y.; Li, H.; Liu, S.; Zhang, L.; Liu, L. Thermodynamic Description and Simulation of Solidification Microstructure in the Co-Ti System. J. Chem. Thermodyn. 2020, 142, 105995. [Google Scholar] [CrossRef]
- Yan, E.; Li, X.; Su, Y.; Liu, D.; Xu, D.; Guo, J.; Fu, H. Prediction of the Solidification Path of Al-4.37Cu-27.02Mg Ternary Eutectic Alloy with a Unified Microsegregation Model Coupled with Thermo-Calc. Int. J. Mater. Res. 2013, 104, 244–254. [Google Scholar] [CrossRef]
- Bratberg, J.; Sundman, B. A Thermodynamic Assessment of the Co-V System. J. Phase Equilibria 2003, 24, 495–503. [Google Scholar] [CrossRef]
- Okamoto, H. Ti-V (Titanium-Vanadium). J. Phase Equilibria 1993, 14, 266–267. [Google Scholar] [CrossRef]
- Davydov, A.V.; Kattner, U.R.; Josell, D.; Waterstrat, R.M.; Boettinger, W.J.; Blendell, J.E.; Shapiro, A.J. Determination of the CoTi Congruent Melting Point and Thermodynamic Reassessment of the Co-Ti System. Metall. Mater. Trans. A 2001, 32, 2175–2186. [Google Scholar] [CrossRef]
- Yan, E.; Ge, X.; Guo, Z.; Zhao, P.; Bai, J.; Ma, D.; Huang, R.; Cheng, J.; Zou, Y.; Chu, H.; et al. Microstructure, Hydrogen Permeability and Ductile-to-Brittle Transition-Hydrogen Concentration of (V, Nb)-Ti-Co Quaternary Alloys. Mater. Chem. Phys. 2023, 305, 127919. [Google Scholar] [CrossRef]
- Wang, H.; Yan, E.; Liu, W.; Di, C.; Cheng, J.; Huang, R.; Ge, X.; Chu, H.; Zou, Y.; Xu, F.; et al. Evolution of Unidirectional Solidification Microstructure and Hydrogenated Treatment of Nb-Ti-Co Quasiperitectic Alloys. J. Phys. Conf. Ser. 2021, 2079, 012013. [Google Scholar] [CrossRef]
- Zhu, K.; Li, X.; Zhu, Z.; Chen, R.; Su, Y.; Guo, J.; Rettenmayr, M.; Liu, D. Analysis of W/Mo Alloying on Hydrogen Permeation Performance of Dual Phase Nb-Ti-Ni Alloys Based on Hydrogen Chemical Potentials. J. Membr. Sci. 2019, 584, 290–299. [Google Scholar] [CrossRef]
- Katsuta, H.; Farraro, R.J.; McLellan, R.B. The Diffusivity of Hydrogen in Palladium. Acta Metall. 1979, 27, 1111–1114. [Google Scholar] [CrossRef]
- Belyakova, R.M.; Kurbanova, E.D.; Sidorov, N.I.; Polukhin, V.A. Nb–Ni- and V–Ni-Based Membranes for High-Purity Hydrogen Production. Russ. Metall. Met. 2022, 2022, 851–860. [Google Scholar] [CrossRef]
- Shi, F.; Xiao, H. Hydrogen Storage Properties of Nb–Hf–Ni Ternary Alloys. Int. J. Hydrogen Energy 2013, 38, 2318–2324. [Google Scholar] [CrossRef]
- Wu, H.; Thibault, J.; Kruczek, B. The Validity of the Time-Lag Method for the Characterization of Mixed-Matrix Membranes. J. Membr. Sci. 2021, 618, 118715. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Shim, J.-H.; Suh, J.-Y. A Finite Outlet Volume Correction to the Time Lag Method: The Case of Hydrogen Permeation through V-Alloy and Pd Membranes. J. Membr. Sci. 2019, 585, 253–259. [Google Scholar] [CrossRef]
- Yan, E.; Liu, W.; Wang, H.; Zhang, K.; Ge, X.; Huang, R.; Cheng, J.; Zou, Y.; Chu, H.; Zhang, H.; et al. Quaternary Nb-Hf-Co-Fe Alloy with Superior Hydrogen Permeation Properties over a Wide Temperature Range. J. Alloys Compd. 2022, 912, 165232. [Google Scholar] [CrossRef]
- Żogal, O.J.; Cotts, R.M. Self-Diffusion Coefficient of Hydrogen in NbH0.6. Phys. Rev. B 1975, 11, 2443–2446. [Google Scholar] [CrossRef]
- Yukawa, H.; Yamashita, D.; Ito, S.; Morinaga, M.; Yamaguchi, S. Alloying Effects on the Phase Stability of Hydrides Formed in Vanadium Alloys. Mater. Trans. 2002, 43, 2757–2762. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Z.; Tang, J.; Deng, J.; Yao, Q.; Zhou, H. Effects of Mo Alloying on the Structure and Hydrogen-Permeation Properties of Nb Metal. J. Alloys Compd. 2018, 740, 810–815. [Google Scholar] [CrossRef]
- Rong, M.; Wang, F.; Wang, J.; Wang, Z.; Zhou, H. Effect of Heat Treatment on Hydrogen Storage Properties and Thermal Stability of V68Ti20Cr12 Alloy. Prog. Nat. Sci. Mater. Int. 2017, 27, 543–549. [Google Scholar] [CrossRef]
- Saeki, Y.; Yamada, Y.; Ishikawa, K. Relationship between Hydrogen Permeation and Microstructure in Nb–TiNi Two-Phase Alloys. Int. J. Hydrogen Energy 2014, 39, 12024–12030. [Google Scholar] [CrossRef]
- Hashi, K.; Ishikawa, K.; Matsuda, T.; Aoki, K. Microstructures and Hydrogen Permeability of Nb-Ti-Ni Alloys with High Resistance to Hydrogen Embrittlement. Mater. Trans. 2005, 46, 1026–1031. [Google Scholar] [CrossRef]
- Ishikawa, K.; Saeki, Y.; Miyajima, Y.; Watanuki, T.; Machida, A. Effects of Rolling and Annealing on Hydrogen Permeability and Crystal Orientation in Nb-TiNi Two-Phase Alloys. Int. J. Hydrogen Energy 2019, 44, 23101–23106. [Google Scholar] [CrossRef]
- Ishikawa, K.; Tokui, S.; Aoki, K. Hydrogen Permeation in Anisotropic Nb–TiNi Two-Phase Alloys Formed by Forging and Rolling. Int. J. Hydrogen Energy 2017, 42, 11411–11421. [Google Scholar] [CrossRef]
- Qin, J.; Wang, Z.; Wang, D.; Wang, F.; Yan, X.; Zhong, Y.; Hu, C.; Zhou, H. First-Principle Investigation of Hydrogen Solubility and Diffusivity in Transition Metal-Doped Vanadium Membranes and Their Mechanical Properties. J. Alloys Compd. 2019, 805, 747–756. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, D.; Guo, J.; Ning, H. Hydrogenation Properties of Mg17Al12 Doped with Alkaline-Earth Metal (Be, Ca, Sr and Ba). J. Alloys Compd. 2019, 774, 865–872. [Google Scholar] [CrossRef]
- Ishikawa, K.; Watanabe, S.; Aoki, K. Microstructure and Hydrogen Permeability in Nb–TiFe Alloys. J. Alloys Compd. 2013, 566, 68–72. [Google Scholar] [CrossRef]
- Fort, D.; Farr, J.P.G.; Harris, I.R. A Comparison of Palladium-Silver and Palladium-Yttrium Alloys as Hydrogen Separation Membranes. J. Common Met. 1975, 39, 293–308. [Google Scholar] [CrossRef]
- Peters, T.A.; Kaleta, T.; Stange, M.; Bredesen, R. Development of Thin Binary and Ternary Pd-Based Alloy Membranes for Use in Hydrogen Production. J. Membr. Sci. 2011, 383, 124–134. [Google Scholar] [CrossRef]
- Luo, W.; Ishikawa, K.; Aoki, K. Highly Hydrogen Permeable Nb–Ti–Co Hypereutectic Alloys Containing Much Primary Bcc-(Nb, Ti) Phase. Int. J. Hydrogen Energy 2012, 37, 12793–12797. [Google Scholar] [CrossRef]
- Hara, S.; Sakaki, K.; Itoh, N.; Kimura, H.-M.; Asami, K.; Inoue, A. An Amorphous Alloy Membrane without Noble Metals for Gaseous Hydrogen Separation. J. Membr. Sci. 2000, 164, 289–294. [Google Scholar] [CrossRef]
- Jia, H.; Goldbach, A.; Zhao, C.; Castro, G.R.; Sun, C.; Xu, H. Permeation and in Situ XRD Studies on PdCuAu Membranes under H2. J. Membr. Sci. 2017, 529, 142–149. [Google Scholar] [CrossRef]
- Braun, F.; Miller, J.B.; Gellman, A.J.; Tarditi, A.M.; Fleutot, B.; Kondratyuk, P.; Cornaglia, L.M. PdAgAu Alloy with High Resistance to Corrosion by H2S. Int. J. Hydrogen Energy 2012, 37, 18547–18555. [Google Scholar] [CrossRef]
- Tarditi, A.M.; Braun, F.; Cornaglia, L.M. Novel PdAgCu Ternary Alloy: Hydrogen Permeation and Surface Properties. Appl. Surf. Sci. 2011, 257, 6626–6635. [Google Scholar] [CrossRef]
Parameters | Values | Ref. | |
---|---|---|---|
Solidification shrinkage | 0.035 | [20] | |
The distance of secondary dendrite (μm) | 0.1 | Calculated | |
V–Ti–Co | DCo (mm2 s−1) | 27 exp (−13,000/T) | Present work |
DTi (mm2 s−1) | 22.3 exp (−11,000/T) | Present work | |
Lbcc-V (J mol−1) | −252,850 + 83T + (−8965 + 3.56T) × (xV − xTi) | Present work | |
LCo2Ti (J mol−1) | −34,618 + 14.6T + (4583 − 62.8T) × (xCo − xTi) | Present work | |
LTiCo (J mol−1) | 35,782 + 1.67T + 2678 × (xTi − xCo) | Present work | |
LCoTi2 (J mol−1) | 42,748 + 1.35T − 35.93 × (xTi − xCo) | Present work | |
LCo3V (J mol−1) | −11,876 + 2.49T + 2781 × (xCo − xV) | Present work | |
Solidification/cooling rates Rf (s−1) | 300 | Calculated | |
Step length of α (Δfs) | 0.0025 | Initial value | |
Step length of binary eutectic ΔT (°C) | 0.25 | Initial value | |
Specific heat (S and L) cPS, cPL (J kg−1K−1) | 1068, 1241 | [2,4,13] | |
Thermal conductivity (solid) λS (W m−1K−1) | 256 | [2,4,13] | |
Thermal conductivity (liquid) λL (W m−1K−1) | 132 | [2,4,13] | |
Liquidus temperature Tliq (°C) | Depends on composition | By ThermoCalc |
No. | Invariant Reaction | Reaction Type | Temperature (K) | Composition of Liquid Phases (at.%) | ||
---|---|---|---|---|---|---|
x (V) | x (Ti) | x (Co) | ||||
U1 | L + CoTi → Co2Ti(c) + Co2Ti(h) | II | 1512 | 29.423 | 0.201 | 70.376 |
U2 | L + CoV → bcc (V) + CoTi | II | 1509 | 45.571 | 26.462 | 27.967 |
U3 | L + CoTi → Co2Ti(h) + CoV | II | 1508 | 22.363 | 21.605 | 56.032 |
U4 | L + Co3Ti → Co2Ti(h)+ fcc | II | 1424 | 18.318 | 9.266 | 72.416 |
P1 | L + CoTi + bcc (V)→ CoTi2 | II | 1421 | 59.761 | 16.297 | 23.942 |
E1 | L → Co3Ti + Co2Ti(h) + CoV | I | 1394 | 16.203 | 15.563 | 68.234 |
No. | Samples | Constituting Phases | Chemical Composition of Primary bcc-(V,Ti) | Values of Φ, (mol H2 m−1s−1Pa−0.5) | ||
---|---|---|---|---|---|---|
V | Ti | Co | ||||
1# | V17.5Ti50Co32.5 | TiCo, eutectic {bcc-(V,Ti) + TiCo} | — | — | — | 1.66 × 10−8 |
2# | V20.5Ti50Co29.5 | TiCo, eutectic {bcc-(V,Ti) + TiCo} | — | — | — | 3.24 × 10−8 |
3# | V23.5Ti50Co26.5 | Eutectic {bcc-(V,Ti) + TiCo} | — | — | — | 4.05 × 10−8 |
4# | V26.5Ti50Co23.5 | bcc-(V,Ti), eutectic {bcc-(V,Ti) + TiCo} | 39.26 | 42.42 | 18.32 | no permeation |
5# | V29.5Ti50Co20.5 | bcc-(V,Ti), eutectic {bcc-(V,Ti) + TiCo} | 41.83 | 44.32 | 13.58 | no permeation |
6# | V32.5Ti50Co17.5 | bcc-(V,Ti), eutectic {bcc-(V,Ti) + TiCo} | 42.38 | 45.92 | 11.7 | no permeation |
No. | Samples | Lattice Parameters (Å) | Cell Volume (Å3) |
---|---|---|---|
1# | V17.5Ti50Co32.5 | 3.781 | 54.053 |
2# | V20.5Ti50Co29.5 | 3.784 | 54.187 |
3# | V23.5Ti50Co26.5 | 3.786 | 54.267 |
4# | V26.5Ti50Co23.5 | 3.788 | 54.354 |
5# | V29.5Ti50Co20.5 | 3.789 | 54.396 |
6# | V32.5Ti50Co17.5 | 3.791 | 54.483 |
No. | Samples | Hydrogen Permeability | Hydrogen Solubility | Hydrogen Diffusivity |
---|---|---|---|---|
[mol H2 m−1 s−1 Pa−0.5] | [mol H2 m−3 Pa−0.5] | [10−9m2 s−1] | ||
1# | V17.5Ti50Co32.5 | 1.66 × 10−8 | 8.91 | 1.87 |
2# | V20.5Ti50Co29.5 | 3.24 × 10−8 | 14.3 | 2.27 |
3# | V23.5Ti50Co26.5 | 4.05 × 10−8 | 16.5 | 2.45 |
— | Nb30Ti35Co35 [11] | 2.53 × 10−8 | 13.2 | 1.93 |
— | Nb30Ti35Ni35 [8] | 1.55 × 10−8 | 32.55 | 0.48 |
— | Pd [5,32] | 1.6 × 10−8 | 4.19 | 38.18 |
— | Pd75Ag25 [1] | 3.21 × 10−8 | — | — |
— | Pd60Cu40 [2] | 1.49× 10−8 | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, E.; Guo, Z.; Jia, L.; Wang, Y.; Zhang, S.; Li, T.; Zou, Y.; Chu, H.; Zhang, H.; Xu, F.; et al. Phase Equilibria, Solidified Microstructure, and Hydrogen Transport Behaviour in the V-Ti-Co System. Membranes 2023, 13, 790. https://doi.org/10.3390/membranes13090790
Yan E, Guo Z, Jia L, Wang Y, Zhang S, Li T, Zou Y, Chu H, Zhang H, Xu F, et al. Phase Equilibria, Solidified Microstructure, and Hydrogen Transport Behaviour in the V-Ti-Co System. Membranes. 2023; 13(9):790. https://doi.org/10.3390/membranes13090790
Chicago/Turabian StyleYan, Erhu, Zhijie Guo, Limin Jia, Yihao Wang, Shuo Zhang, Tangwei Li, Yongjin Zou, Hailiang Chu, Huanzhi Zhang, Fen Xu, and et al. 2023. "Phase Equilibria, Solidified Microstructure, and Hydrogen Transport Behaviour in the V-Ti-Co System" Membranes 13, no. 9: 790. https://doi.org/10.3390/membranes13090790