The Efficiency of Polyester-Polysulfone Membranes, Coated with Crosslinked PVA Layers, in the Water Desalination by Pervaporation
Abstract
:1. Introduction and Short Review
1.1. Materials and Methods Production of Polymer Membranes
1.2. Polymer Membranes Used for Pervaporative Water Desalination
1.3. Surfactants in the Preparation of PV Polymeric Membranes
2. Materials and Methods
2.1. Materials
2.2. Research Methods
2.2.1. Analytical Methods
2.2.2. Pervaporation Process Setup
3. Results and Discussion
3.1. The Influence of PVA Concentration and Crosslinking Agents on Membrane Preparation
3.2. Characteristics of the Membranes
3.3. The Influence of Crosslinking Agents on Membranes Transport Properties
3.4. The Influence of the Type of a Surfactant on Membrane Transport Properties
3.5. The Influence of Cross-Linking Density on Membranes Transport Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
CA | citric acid |
CD | cyclodextrins |
DBS | 2,5-diaminobenzenesulfonic acid |
DCPV | direct-contact pervaporation |
DEDPS | (diethoxy)diphenylsilane |
DI | demineralized water |
GA | glutaraldehyde |
GO | graphene oxide |
HPAN | hydrolyzed polyacrylonitrile |
LC | surfactant “Ludwik cytrynowy” (in Polish) |
M | a membrane created in this work |
MA | maleic acid |
MD | membrane distillation |
MMM | mixed matrix membrane |
MTES | methyl(triethoxy)silane |
MWCT | carbon nanotubes |
MWCO | molecular weight cut-off |
NH2-POSS | (aminopropylisobutyl) silsesquioxane |
NIPS | non-solvent induced phase separation method |
NF | nanofiltration |
PAN | polyacrylonitrile |
PEG | poly(ethylene glycol) |
PERVAP | pervaporation commercial membrane |
PES | polyesters |
PMDA | pyromellitic acid |
PP | polypropylene |
PPG | copolymer |
PSf | polysulfone |
PS20 | polyester-polysulfone commercial membrane |
PTES | phenyl(trietoxy)silane |
PV | pervaporation |
PVA | polyvinyl alcohol |
RO | reverse osmosis |
SA | sulfosuccinic acid |
SDS | sodium dodecyl sulfate |
SEM | scanning electron microscope |
TEOS | (tetraethoxy)silane |
TFC | thin film composite membrane |
TFN | thin film nanocomposite membrane |
UF | ultrafiltration |
List of Symbols | |
A | membrane area [m2] |
Cp | salt concentration of permeate [g/dm3] |
Cf | salt concentration of feed [g/dm3] |
D | thickness of membrane [µm] |
Jp | permeate flux [kg/(m2 h)] |
md | mass of dry membrane [g] |
mp | mass of permeate [kg] |
mw | mass of wet membrane [g] |
p | pressure on the low pressure side of the membrane [Pa] |
R | salt retention [%] |
S | swelling degree [%] |
t | process time [h] |
δ | contact angle [o] |
ρd | density of the whole, dry PV membrane [g/cm3] |
υ | cross-linking density [mol/m3] |
References
- Balima, L.H.; Nacoulma, B.M.I.; Da, S.S.; Ouédraogo, A.; Soro, D.; Thiombiano, A. Impacts of Climate Change on the Geographic Distribution of African Oak Tree (Afzelia Africana Sm.) in Burkina Faso, West Africa. Heliyon 2022, 8, e08688. [Google Scholar] [CrossRef] [PubMed]
- Charlson, F.; Ali, S.; Augustinavicius, J.; Benmarhnia, T.; Birch, S.; Clayton, S.; Fielding, K.; Jones, L.; Juma, D.; Snider, L.; et al. Global Priorities for Climate Change and Mental Health Research. Environ. Int. 2022, 158, 106984. [Google Scholar] [CrossRef]
- Lakew, H.B.; Moges, S.A.; Anagnostou, E.N.; Nikolopoulos, E.I.; Asfaw, D.H. Evaluation of Global Water Resources Reanalysis Runoff Products for Local Water Resources Applications: Case Study-Upper Blue Nile Basin of Ethiopia. Water Resour. Manag. 2020, 34, 2157–2177. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Breach, P.A. The Role of Water Supply Development in the Earth System. Water 2020, 12, 3349. [Google Scholar] [CrossRef]
- Gleik, P.H.; Schneider, S.H. Water Resources. In W: Encyclopedia of Climate and Weather; Oxford University Press: Oxford, UK, 1996; Volume 2, pp. 817–823. [Google Scholar]
- Kitaysky, A.S.; Golubova, E.G. Climate Change Causes Contrasting Trends in Reproductive Performance of Planktivorous and Piscivorous Alcids. J. Anim. Ecol. 2000, 69, 248–262. [Google Scholar] [CrossRef]
- Krakauer, N.Y. Special Issue on Climate Change and Water Resources. Appl. Sci. 2020, 10, 2818. [Google Scholar] [CrossRef]
- Vineis, P.; Chan, Q.; Khan, A. Climate Change Impacts on Water Salinity and Health. J. Epidemiol. Glob. Health 2011, 1, 5. [Google Scholar] [CrossRef]
- Weckroth, M.; Ala-Mantila, S. Socioeconomic Geography of Climate Change Views in Europe. Glob. Environ. Change 2022, 72, 102453. [Google Scholar] [CrossRef]
- Charcosset, C. A Review of Membrane Processes and Renewable Energies for Desalination. Desalination 2009, 245, 214–231. [Google Scholar] [CrossRef]
- Honarparvar, S.; Zhang, X.; Chen, T.; Alborzi, A.; Afroz, K.; Reible, D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. Membranes 2021, 11, 246. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Goh, P.S.; Yogarathinam, L.T.; Zulhairun, A.K.; Ismail, A.F. Current Advances in Membrane Technologies for Produced Water Desalination. Desalination 2020, 493, 114643. [Google Scholar] [CrossRef]
- Ophir, A.; Lokiec, F. Advanced MED Process for Most Economical Sea Water Desalination. Desalination 2005, 182, 187–198. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A. A Review of the Water Desalination Technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Younos, T.; Tulou, K.E. Overview of Desalination Techniques: Overview of Techniques. J. Contemp. Water Res. Educ. 2009, 132, 3–10. [Google Scholar] [CrossRef]
- Zak, G.M.; Mancini, N.D.; Mitsos, A. Integration of Thermal Desalination Methods with Membrane-Based Oxy-Combustion Power Cycles. Desalination 2013, 311, 137–149. [Google Scholar] [CrossRef]
- Noble, R.D. An Overview of Membrane Separations. Sep. Sci. Technol. 1987, 22, 731–743. [Google Scholar] [CrossRef]
- Aliyu, U.M.; Rathilal, S.; Isa, Y.M. Membrane Desalination Technologies in Water Treatment: A Review. Water Pract. Technol. 2018, 13, 738–752. [Google Scholar] [CrossRef]
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-Art of Reverse Osmosis Desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Koros, W.J.; Ma, Y.H.; Shimidzu, T. Terminology for Membranes and Membrane Processes (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 1479–1489. [Google Scholar] [CrossRef]
- Li, Y.; Thomas, E.R.; Molina, M.H.; Mann, S.; Walker, W.S.; Lind, M.L.; Perreault, F. Desalination by Membrane Pervaporation: A Review. Desalination 2023, 547, 116223. [Google Scholar] [CrossRef]
- Feng, X.; Huang, R.Y.M. Liquid Separation by Membrane Pervaporation: A Review. Ind. Eng. Chem. Res. 1997, 36, 1048–1066. [Google Scholar] [CrossRef]
- Cao, R.; Shi, S.; Cao, H.; Li, Y.; Duan, F.; Li, Y. Surface Composite Modification of Anion Exchange Membrane by Electrodeposition and Self-Polymerization for Improved Antifouling Performance. Colloids Surf. Physicochem. Eng. Asp. 2022, 648, 129402. [Google Scholar] [CrossRef]
- Bolto, B.; Tran, T.; Hoang, M.; Xie, Z. Crosslinked Poly(Vinyl Alcohol) Membranes. Prog. Polym. Sci. 2009, 34, 969–981. [Google Scholar] [CrossRef]
- Wang, Q.; Li, N.; Bolto, B.; Hoang, M.; Xie, Z. Desalination by Pervaporation: A Review. Desalination 2016, 387, 46–60. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, F.; Wang, M.; Li, W.; Song, Y.; Liu, G.; Yang, H.; Gao, B.; Wu, H.; Jiang, Z. Hybrid Membranes for Pervaporation Separations. J. Membr. Sci. 2017, 541, 329–346. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Wu, L.; Wei, G. Fabrication, Properties, Performances, and Separation Application of Polymeric Pervaporation Membranes: A Review. Polymers 2020, 12, 1466. [Google Scholar] [CrossRef]
- Zhao, P.; Xue, Y.; Zhang, R.; Cao, B.; Li, P. Fabrication of Pervaporation Desalination Membranes with Excellent Chemical Resistance for Chemical Washing. J. Membr. Sci. 2020, 611, 118367. [Google Scholar] [CrossRef]
- Eljaddi, T.; Mendez, D.L.M.; Favre, E.; Roizard, D. Development of New Pervaporation Composite Membranes for Desalination: Theoretical and Experimental Investigations. Desalination 2021, 507, 115006. [Google Scholar] [CrossRef]
- Mukherjee, M.; Roy, S.; Bhowmick, K.; Majumdar, S.; Prihatiningtyas, I.; Van der Bruggen, B.; Mondal, P. Development of High Performance Pervaporation Desalination Membranes: A Brief Review. Process Saf. Environ. Prot. 2022, 159, 1092–1104. [Google Scholar] [CrossRef]
- Xue, Y.L.; Huang, J.; Lau, C.H.; Cao, B.; Li, P. Tailoring the Molecular Structure of Crosslinked Polymers for Pervaporation Desalination. Nat. Commun. 2020, 11, 1461. [Google Scholar] [CrossRef]
- Wang, S.; Yi, Z.; Zhao, X.; Zhou, Y.; Gao, C. Aggregation Suppressed Thin Film Nanocomposite (TFN) Membranes Prepared with an in Situ Generation of TiO2 Nanoadditives. RSC Adv. 2017, 7, 26136–26144. [Google Scholar] [CrossRef]
- Tseng, C.; Liu, Y.-L. Creation of Water-Permeation Pathways with Matrix-Polymer Functionalized Carbon Nanotubes in Polymeric Membranes for Pervaporation Desalination. J. Membr. Sci. Lett. 2022, 2, 100027. [Google Scholar] [CrossRef]
- Lu, X.; Elimelech, M. Fabrication of Desalination Membranes by Interfacial Polymerization: History, Current Efforts, and Future Directions. Chem. Soc. Rev. 2021, 50, 6290–6307. [Google Scholar] [CrossRef]
- Liang, B.; Pan, K.; Li, L.; Giannelis, E.P.; Cao, B. High Performance Hydrophilic Pervaporation Composite Membranes for Water Desalination. Desalination 2014, 347, 199–206. [Google Scholar] [CrossRef]
- Sharabati, J.-A.-D.; Guclu, S.; Erkoc-Ilter, S.; Koseoglu-Imer, D.Y.; Unal, S.; Menceloglu, Y.Z.; Ozturk, I.; Koyuncu, I. Interfacially Polymerized Thin-Film Composite Membranes: Impact of Support Layer Pore Size on Active Layer Polymerization and Seawater Desalination Performance. Sep. Purif. Technol. 2019, 212, 438–448. [Google Scholar] [CrossRef]
- Feng, S.; Low, Z.-X.; Liu, S.; Zhang, L.; Zhang, X.; Simon, G.P.; Fang, X.-Y.; Wang, H. Microporous Polymer Incorporated Polyamide Membrane for Reverse Osmosis Desalination. J. Membr. Sci. 2020, 610, 118299. [Google Scholar] [CrossRef]
- Gabryś, T.; Fryczkowska, B.; Biniaś, D.; Ślusarczyk, C.; Fabia, J. Preparation and Properties of Composite Cellulose Fibres with the Addition of Graphene Oxide. Carbohydr. Polym. 2021, 254, 117436. [Google Scholar] [CrossRef]
- Rynkowska, E.; Fatyeyeva, K.; Marais, S.; Kujawa, J.; Kujawski, W. Chemically and Thermally Crosslinked PVA-Based Membranes: Effect on Swelling and Transport Behavior. Polymers 2019, 11, 1799. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, P.C.; Edgren, D. Crosslinking Reaction of Poly(Vinyl Alcohol) with Glyoxal. J. Polym. Res. 2010, 17, 725–730. [Google Scholar] [CrossRef]
- Ihsanullah, I. Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Lett. 2020, 12, 72. [Google Scholar] [CrossRef]
- Cho, K.L.; Hill, A.J.; Caruso, F.; Kentish, S.E. Chlorine Resistant Glutaraldehyde Crosslinked Polyelectrolyte Multilayer Membranes for Desalination. Adv. Mater. 2015, 27, 2791–2796. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, J.; Guo, H. Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials. Membranes 2022, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Truong, Y.B.; Choi, J.; Mardel, J.; Gao, Y.; Maisch, S.; Musameh, M.; Kyratzis, I.L. Functional Cross-Linked Electrospun Polyvinyl Alcohol Membranes and Their Potential Applications. Macromol. Mater. Eng. 2017, 302, 1700024. [Google Scholar] [CrossRef]
- Liu, G.; Jin, W. Pervaporation Membrane Materials: Recent Trends and Perspectives. J. Membr. Sci. 2021, 636, 119557. [Google Scholar] [CrossRef]
- Meng, J.; Li, P.; Cao, B. High-Flux Direct-Contact Pervaporation Membranes for Desalination. ACS Appl. Mater. Interfaces 2019, 11, 28461–28468. [Google Scholar] [CrossRef]
- Xia, L.L.; Li, C.L.; Wang, Y. In-Situ Crosslinked PVA/Organosilica Hybrid Membranes for Pervaporation Separations. J. Membr. Sci. 2016, 498, 263–275. [Google Scholar] [CrossRef]
- Darmawan, A.; Munzakka, L.; Karlina, L.; Saputra, R.E.; Sriatun, S.; Astuti, Y.; Wahyuni, A.S. Pervaporation Membrane for Desalination Derived from Tetraethylorthosilicate-Methyltriethoxysilane. J. Sol-Gel Sci. Technol. 2022, 101, 505–518. [Google Scholar] [CrossRef]
- Xie, Z.; Hoang, M.; Duong, T.; Ng, D.; Dao, B.; Gray, S. Sol–Gel Derived Poly(Vinyl Alcohol)/Maleic Acid/Silica Hybrid Membrane for Desalination by Pervaporation. J. Membr. Sci. 2011, 383, 96–103. [Google Scholar] [CrossRef]
- Xie, Z.; Ng, D.; Hoang, M.; Duong, T.; Gray, S. Separation of Aqueous Salt Solution by Pervaporation through Hybrid Organic–Inorganic Membrane: Effect of Operating Conditions. Desalination 2011, 273, 220–225. [Google Scholar] [CrossRef]
- Elma, M.; Sumardi, A.; Paramita, A.; Rahma, A.; Lestari, A.E.; Yanto, D.H.Y.; Hadi, S.; Assyaifi, Z.L.; Sunardi; Raharjo, Y. Physicochemical Properties of Mesoporous Organo-Silica Xerogels Fabricated through Organo Catalyst. Membranes 2021, 11, 607. [Google Scholar] [CrossRef]
- Yu, L.; Al-Jariry, N.; Serikbayeva, T.; Hedlund, J. Ultra-Thin Zeolite CHA and FAU Membranes for Desalination by Pervaporation. Sep. Purif. Technol. 2022, 294, 121177. [Google Scholar] [CrossRef]
- Ge, R.; Huo, T.; Gao, Z.; Li, J.; Zhan, X. GO-Based Membranes for Desalination. Membranes 2023, 13, 220. [Google Scholar] [CrossRef] [PubMed]
- Prihatiningtyas, I.; Van der Bruggen, B. Nanocomposite Pervaporation Membrane for Desalination. Chem. Eng. Res. Des. 2020, 164, 147–161. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Qiblawey, H. Functional GO-Based Membranes for Water Treatment and Desalination: Fabrication Methods, Performance and Advantages. A Review. Chemosphere 2021, 274, 129853. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Yuan, H.; Lu, J. Preparation and Characterization of PVA-g-GO/PVA/PAN Composite Membrane for Pervaporation Desalination. Can. J. Chem. Eng. 2023, 101, 2199–2211. [Google Scholar] [CrossRef]
- Saleem, H.; Trabzon, L.; Kilic, A.; Zaidi, S.J. Recent Advances in Nanofibrous Membranes: Production and Applications in Water Treatment and Desalination. Desalination 2020, 478, 114178. [Google Scholar] [CrossRef]
- Singha, N.; Karmakar, M.; Chattopadhyay, P.; Roy, S.; Deb, M.; Mondal, H.; Mahapatra, M.; Dutta, A.; Mitra, M.; Roy, J. Structures, Properties, and Performances—Relationships of Polymeric Membranes for Pervaporative Desalination. Membranes 2019, 9, 58. [Google Scholar] [CrossRef]
- Athayde, D.D.; Motuzas, J.; Diniz da Costa, J.C.; Vasconcelos, W.L. Novel Two-Step Phase Inversion and Dry Surface Coated Carbon Membranes on Alumina Freeze-Cast Substrates for Desalination. Desalination 2021, 500, 114862. [Google Scholar] [CrossRef]
- Selim, A.; Toth, A.J.; Haaz, E.; Fozer, D.; Szanyi, A.; Hegyesi, N.; Mizsey, P. Preparation and Characterization of PVA/GA/Laponite Membranes to Enhance Pervaporation Desalination Performance. Sep. Purif. Technol. 2019, 221, 201–210. [Google Scholar] [CrossRef]
- Selim, A.; Toth, A.J.; Fozer, D.; Haaz, E.; Mizsey, P. Pervaporative Desalination of Concentrated Brine Solution Employing Crosslinked PVA/Silicate Nanoclay Membranes. Chem. Eng. Res. Des. 2020, 155, 229–238. [Google Scholar] [CrossRef]
- Yilman, B.; Nigiz, F.U.; Aytaç, A.; Hilmioglu, N.D. Multi-Walled Carbon Nanotube Doped PVA Membrane for Desalination. Water Supply 2019, 19, 1229–1237. [Google Scholar] [CrossRef]
- Kuznetsov, Y.P.; Kruchinina, E.V.; Baklagina, Y.G.; Khripunov, A.K.; Tulupova, O.A. Deep Desalination of Water by Evaporation through Polymeric Membranes. Russ. J. Appl. Chem. 2007, 80, 790–798. [Google Scholar] [CrossRef]
- Sun, J.; Jia, W.; Guo, J.; Khanzada, N.K.; Jin, P.; Wong, P.W.; Zhang, X.; An, A.K. Amino-Embedded Carbon Quantum Dots Incorporated Thin-Film Nanocomposite Membrane for Desalination by Pervaporation. Desalination 2022, 533, 115742. [Google Scholar] [CrossRef]
- Feng, B.; Xu, K.; Huang, A. Synthesis of Graphene Oxide/Polyimide Mixed Matrix Membranes for Desalination. RSC Adv. 2017, 7, 2211–2217. [Google Scholar] [CrossRef]
- Zhan, X.; Gao, Z.; Ge, R.; Lu, J.; Li, J.; Wan, X. Rigid POSS Intercalated Graphene Oxide Membranes with Hydrophilic/Hydrophobic Heterostructure for Efficient Pervaporation Desalination. Desalination 2022, 543, 116106. [Google Scholar] [CrossRef]
- Cha-umpong, W.; Mayyas, M.; Razmjou, A.; Chen, V. Modification of GO-Based Pervaporation Membranes to Improve Stability in Oscillating Temperature Operation. Desalination 2021, 516, 115215. [Google Scholar] [CrossRef]
- Qin, D.; Zhang, R.; Cao, B.; Li, P. Fabrication of High-Performance Composite Membranes Based on Hierarchically Structured Electrospun Nanofiber Substrates for Pervaporation Desalination. J. Membr. Sci. 2021, 638, 119672. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Sun, Y.-M.; Hu, C.-C.; Lai, J.-Y.; Liu, Y.-L. Employing Lignin in the Formation of the Selective Layer of Thin-Film Composite Membranes for Pervaporation Desalination. Mater. Adv. 2021, 2, 3099–3106. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, X.; Cao, B.; Li, P. Fabrication of High-Performance PVA/PAN Composite Pervaporation Membranes Crosslinked by PMDA for Wastewater Desalination. Pet. Sci. 2018, 15, 146–156. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, B.; Qu, T.; Cao, B.; Li, P. High-Performance Sulfosuccinic Acid Cross-Linked PVA Composite Pervaporation Membrane for Desalination. Environ. Technol. 2019, 40, 312–320. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, S.; Peng, B.; Luo, X.; Liu, X.; Yang, T.; Wang, B.; Zhang, Q. Cyclodextrin-Based Pervaporation Membranes for Low-Temperature Seawater Desalination. J. Membr. Sci. 2023, 675, 121527. [Google Scholar] [CrossRef]
- Qin, D.; Liu, H.; Xiong, T.; Wang, J.; Zhang, R.; Cao, B.; Li, P. Enhancing the Property of Composite Pervaporation Desalination Membrane by Fabricating a Less Resistance Substrate with Porous but Skinless Surface Structure. Desalination 2022, 525, 115496. [Google Scholar] [CrossRef]
- Dalvi, V.; Tang, Y.P.; Staudt, C.; Chung, T.S. Influential Effects of Nanoparticles, Solvent and Surfactant Treatments on Thin Film Nanocomposite (TFN) Membranes for Seawater Desalination. Desalination 2017, 420, 216–225. [Google Scholar] [CrossRef]
- Lau, W.J.; Ismail, A.F.; Misdan, N.; Kassim, M.A. ‘A Recent Progress in Thin Film Composite Membrane: A Review’. Desalination 2012, 287, 190–199. [Google Scholar] [CrossRef]
- Jegal, J.; Min, S.G.; Lee, K.-H. Factors Affecting the Interfacial Polymerization of Polyamide Active Layers for the Formation of Polyamide Composite Membranes. J. Appl. Polym. Sci. 2002, 86, 2781–2787. [Google Scholar] [CrossRef]
- Mansourpanah, Y.; Madaeni, S.S.; Rahimpour, A. Fabrication and Development of Interfacial Polymerized Thin-Film Composite Nanofiltration Membrane Using Different Surfactants in Organic Phase; Study of Morphology and Performance. J. Membr. Sci. 2009, 343, 219–228. [Google Scholar] [CrossRef]
- Saha, N.K.; Joshi, S.V. Performance Evaluation of Thin Film Composite Polyamide Nanofiltration Membrane with Variation in Monomer Type. J. Membr. Sci. 2009, 342, 60–69. [Google Scholar] [CrossRef]
- Tsai, H.A.; Li, L.D.; Lee, K.R.; Wang, Y.C.; Li, C.L.; Huang, J.; Lai, J.Y. Effect of Surfactant Addition on the Morphology and Pervaporation Performance of Asymmetric Polysulfone Membranes. J. Membr. Sci. 2000, 176, 97–103. [Google Scholar] [CrossRef]
- Alsari, A.M.; Khulbe, K.C.; Matsuura, T. The Effect of Sodium Dodecyl Sulfate Solutions as Gelation Media on the Formation of PES Membranes. J. Membr. Sci. 2001, 188, 279–293. [Google Scholar] [CrossRef]
- Stammer, D.; Martins, M.S.; Köhler, J.; Köhl, A. How Well Do We Know Ocean Salinity and Its Changes? Prog. Oceanogr. 2021, 190, 102478. [Google Scholar] [CrossRef]
- Martinez, M.I.; Garzón, E.; Pérez, D.L.; Gartner, C. Flory-Huggins interaction parameter for PVA-water in hydrogels prepared by two methods: Freezing/thawing and crosslinking with citric acid. Rev. Colomb. Mater. 2022, 19, 64–74. [Google Scholar] [CrossRef]
- Gortat, I.; Marszałek, J.; Wawrzyniak, P. Energy Analysis of a Laboratory Process of Water Desalination by Pervaporation and Reverse Osmosis. Chem. Process Eng. New Front. 2024, 45, e48. [Google Scholar] [CrossRef]
- Gortat, I.; Marszałek, J.; Bodethala Narayanan Vedha Hari, B.N.; Brzeziński, M.; Wawrzyniak, P. Desalination of sea and geothermal water on commercial membranes using pervaporation. Deswater 2023, 316, 605–615. [Google Scholar] [CrossRef]
- Lang, K.; Sourirajan, S.; Matsuura, T.; Chowdhury, G. A Study on the Preparation of Polyvinyl Alcohol Thin-Film Composite Membranes and Reverse Osmosis Testing. Desalination 1996, 104, 185–196. [Google Scholar] [CrossRef]
- do Nascimento, F.C.; de Aguiar, L.C.V.; Costa, L.A.T.; Fernandes, M.T.; Marassi, R.J.; de Gomes, A.S.; de Castro, J.A. Formulation and Characterization of Crosslinked Polyvinyl Alcohol (PVA) Membranes: Effects of the Crosslinking Agents. Polym. Bull. 2021, 78, 917–929. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Lin, S.; Wang, Q. Preparation and Properties of Glutaraldehyde Crosslinked Poly(Vinyl Alcohol) Membrane with Gradient Structure. J. Polym. Res. 2020, 27, 228. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Ko, H.-U.; Zhai, L.; Li, Y.; Kim, J. Preparation and Characterization of Hydrogels from Polyvinyl Alcohol and Cellulose and Their Electroactive Behavior. Soft Mater. 2017, 15, 64–72. [Google Scholar] [CrossRef]
- Wang, S.; Ren, J.; Li, W.; Sun, R.; Liu, S. Properties of Polyvinyl Alcohol/Xylan Composite Films with Citric Acid. Carbohydr. Polym. 2014, 103, 94–99. [Google Scholar] [CrossRef]
- Oliveira, M.J.A.; Rodrigues, K.M.S.; Parra, D.F.; Lugão, A.B. Effects of sterilization on poly(vinyl alcohol) (pval) hydrogels matrices. In Proceedings of the INAC 2007 International Nuclear Atlantic Conference Nuclear Energy and Energetic Challenges for 21st Century, Santos, SP, Brazil, 30 September–5 October 2007. [Google Scholar]
Possible Application | Membrane Manufacturing Method | Materials Forming the Membrane | Results | References |
---|---|---|---|---|
PV | PVA, fillers: GO, zeolites, silica | excellent transport properties; resistance to scaling or/and fouling | [25] | |
DCPV | phase inversion | PVA/PVDF/PTFE | three-layer membrane; high efficiency (Jp, R); anti-fouling properties | [46] |
PV | in situ polymerization | PVA, silica, PTES, DEDPS as silica precursors | [47] | |
PV | sol-gel | silanes: TEOS, MTES (acted as a precursor for micropores in the transport layer) | salt retention rate of 99% | [48] |
PV | sol-gel | PVA, MA, TEOS (as the silica precursor) | highly homogeneous hybrid membranes; MA led to formation of amorphous regions, which increased the diffusion of water through the membrane | [49] |
PV | PVA/MA, silica | the use of silica reduces the swelling phenomenon of membranes | [50] | |
PV | sol-gel and carbonization at 175 °C | TEOS, CA and NH4OH (to enhance their hydrostability) | xerogels could be useful in the preparation of PV membranes | [51] |
Feed | Membrane Manufacturing Method | Materials Forming the Membrane | Results | References | |
---|---|---|---|---|---|
highly saline water | PVA, 2% wt laponite (group of aluminosilicates) | 10% wt. NaCl; T = 40–70 °C | R = 99,9% | [60] | |
highly saline water | chemical cross-linking | PVA dispersions, GA, 7% wt. laponite | T = 40 °C | R = 99.98% | [61] |
saline water | zeolites with CHA and FAU structures | T = 90 °C | Jp = 40–51 kg/(m²h) | [52] | |
saline water | PVA, MCWT | multi-walled membranes with 0.3% wt. MCWT | R = 98.8% | [62] | |
saline water | hydrated cellulose and cellulose diacetate | Jp = 6–7 kg/(m2h) | [63] | ||
saline water | interfacial polymerization | filler: quantum dots | TFN membranes; T = 70 °C | R = 99.98% Jp = 23.2 kg/(m²h)] | [64] |
saline water | wet phase inversion | GO | membranes doped with GO | R = 99.9%; Jp = 36.1 kg/(m²h) | [65] |
saline water | Intercalation NH2-POSS in GO layer | oligomeric NH2-POSS), GO, GA | stable performance over a 24h desalination | R = 99.8% Jp = 112.7 kg/(m²h) | [66] |
concentrated inland brine | PP, PVA with GO and chitosan | structure defects, | R = 99.99% Jp = 12.8–30.5 kg/(m2h) | [67] | |
PP, PVA with GO and chitosan, DBS | lack of membrane stability | low R | |||
saline water | electrospinning | PVA, aliphatic compounds containing sulfonic groups | membranes 0.73 μm thick for PV and MD; hydrostable and mechanically strong | R = 99.7% Jp = 234.9 kg/(m2h) | [31] |
saline water | PAN, PVA with cellulose nanofibers | TFC for 20% wt. NaCl; Jp = 103.1 kg/(m2h) | R = 99.8% Jp = 238.7 kg/(m2h) | [68] | |
saline water | solution casting | thin-layer lignin | TFC | R = 99.95% Jp = 18.5 kg/(m2h) | [69] |
wastewater desalination | PAN UF membrane, PVA crosslinked with PMDA | PVA layer of 2 µm thickness; crosslinked with 20% wt. PMDA, 100 °C for 2 h | R = 99.98% Jp = 32.26 kg/(m²h) at T = 70 °C, 3.5% wt. NaCl | [70] | |
desalinating seawater, saline water, treating concentrate from RO | SA-PVA/PAN membrane PVA, SA, commercial PAN UF membrane | performance 120 h, p = 100 Pa, T = 70 °C, 3.5% wt. NaCl | R = 99.8% Jp = 27.9 kg/(m²h) | [71] | |
10% wt. NaCl | R = 99.8% Jp = 11.2 kg/(m²h) | ||||
seawater desalination; highly saline water | reaction of CD-based neutral ions | HPAN, terephthaldehyde | treatment at low temperatures, hydrophilicities; gas permeabilities T = 25 °C | R = 99.8% Jp = 15.0 kg/(m²h) | [72] |
saline water | spraying 0.6 μm layer of PVA onto a PSf, PSf prepared using NIPS | PVA/PSf UF membrane | 3.5% wt. NaCl; T = 70 °C | R = 99.9% Jp = 124.8 kg/(m²·h), | [73] |
20% wt. NaCl; T = 70 °C | Jp = 71.3 kg/(m²·h) |
Membranes Numbers | PVA 5 wt.% Solution | Crosslinking Agents | Surfactants | Other Ingredients |
---|---|---|---|---|
M52 | 4.0 mL | 0.4 mL GA * | 0.4 mL Tween 20 | - |
M53 | 0.4 mL LC | |||
M54 | 0.2 mL GA * | 0.2 mL Tween 20 | ||
M55 | 0.4mL GA * | 0.4 mL Rokopol 30P10 | ||
M56 | 0.4 mL CA * | 0.4 mL Tween 20 | ||
M57 | 0.2 mL CA * 0.2 mL GA * | |||
M61 | 0.2 mL CA * 0.2 mL GA * | 0.1 mL PEG 200 | ||
M63 | 0.2 mL CA * | 0.4 mL LC | - | |
M67 | 0.4 mL CA * | 0.1 mL PEG 200 | ||
M69 | 0.4 mL GA * | 0.4 mL Rokanol L4P5 | - | |
M75 | 0.2 mL CA * | 0.4 mL LC | 0.1 mL PEG 200 | |
M86 | 0.4mL CA * | 0.2 mL LC | - | |
M88 | 0.4mL GA * | |||
M102 | 0.2 mL Glyoxal (40 wt.% aqueous solution) | |||
M107 | 0.1 mL Glyoxal (40 wt.% aq. solution) | |||
M115 | 0.4 g Tartaric acid | |||
M116 | 0.05g Tannic acid 0.4 mL GA | |||
M120 | 0.2 mL CA | 0.2 mL PEG 200 | ||
M121 | 0.2 mL GA | 0.1 mL PEG 200 | ||
M122 | 0.4 mL GA | 0.1 mL PEG 200 |
Membranes Numbers | δ [°] | S [%] | D [µm] | ρd [g/cm3] |
---|---|---|---|---|
M52 | 36.0 | 56.38 | 108.8 | 1.11 |
M53 | 44.5 | 56.20 | 126.0 | 1.12 |
M54 | 46.3 | 50.76 | 111.2 | 1.10 |
M55 | 14.8 | 60.29 | 118.2 | 1.10 |
M56 | 56.3 | 48.99 | 109.8 | 1.11 |
M57 | 40.2 | 52.62 | 125.2 | 1.13 |
M61 | 34.1 | 57.48 | 109.8 | 1.12 |
M63 | 13.9 | 60.69 | 120.4 | 1.07 |
M67 | 47.4 | 49.01 | 115.0 | 1.08 |
M69 | 29.9 | 58.17 | 136.6 | 1.09 |
M75 | 19.5 | 60.06 | 125.0 | 1.09 |
M86 | 34.0 | 56.50 | 122.8 | 1.09 |
M88 | 14.3 | 60.28 | 111.2 | 1.10 |
M102 | 17.6 | 60.14 | 118.0 | 1.10 |
M115 | 33.2 | 58.31 | 116.0 | 1.10 |
M107 | 21.2 | 58.12 | 111.4 | 1.06 |
M116 | 25.9 | 65.45 | 119.8 | 1.10 |
M120 | 30.0 | 58.66 | 110.6 | 1.12 |
M121 | 27.7 | 59.13 | 116.8 | 1.11 |
M122 | 23.0 | 59.98 | 111.8 | 1.11 |
PS20 | 76.8 | 41.18 | 101.2 | 1.02 |
Membranes Numbers | Crosslinking Agents | Surfactants | R [%] | |
---|---|---|---|---|
M52 | GA * | Tween 20 | 3.05 | 99.59 |
M53 | LC | 2.15 | 99.61 | |
M54 | Tween 20 | 8.03 | 99.85 | |
M55 | GA * | Rokopol 30P10 | 8.10 | 99.73 |
M56 | CA * | Tween 20 | 6.38 | 99.94 |
M57 | CA * + GA * | 5.05 | 99.90 | |
M61 | 16.90 | 99.89 | ||
M63 | CA * | LC | 13.91 | 99.81 |
M67 | 5.94 | 92.87 | ||
M69 | GA * | Rokanol L4P5 | 7.09 | 99.58 |
M75 | CA * | LC | 14.93 | 99.43 |
M86 | CA * | 12.12 | 99.93 | |
M88 | GA * | 4.72 | 99.28 | |
M102 | Glyoxal ** | 17.50 | 99.90 | |
M107 | 12.10 | 99.87 | ||
M115 | Tartaric acid | 6.29 | 99.74 | |
M116 | Tannic acid + GA * | 5.46 | 99.89 | |
M120 | CA * | 9.63 | 99.01 | |
M121 | GA * | 6.87 | 99.21 | |
M122 | 4.31 | 99.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gortat, I.; Chruściel, J.J.; Marszałek, J.; Żyłła, R.; Wawrzyniak, P. The Efficiency of Polyester-Polysulfone Membranes, Coated with Crosslinked PVA Layers, in the Water Desalination by Pervaporation. Membranes 2024, 14, 213. https://doi.org/10.3390/membranes14100213
Gortat I, Chruściel JJ, Marszałek J, Żyłła R, Wawrzyniak P. The Efficiency of Polyester-Polysulfone Membranes, Coated with Crosslinked PVA Layers, in the Water Desalination by Pervaporation. Membranes. 2024; 14(10):213. https://doi.org/10.3390/membranes14100213
Chicago/Turabian StyleGortat, Izabela, Jerzy J. Chruściel, Joanna Marszałek, Renata Żyłła, and Paweł Wawrzyniak. 2024. "The Efficiency of Polyester-Polysulfone Membranes, Coated with Crosslinked PVA Layers, in the Water Desalination by Pervaporation" Membranes 14, no. 10: 213. https://doi.org/10.3390/membranes14100213
APA StyleGortat, I., Chruściel, J. J., Marszałek, J., Żyłła, R., & Wawrzyniak, P. (2024). The Efficiency of Polyester-Polysulfone Membranes, Coated with Crosslinked PVA Layers, in the Water Desalination by Pervaporation. Membranes, 14(10), 213. https://doi.org/10.3390/membranes14100213