Can Storage Stability and Simulated Gastrointestinal Behavior Change the Cytotoxic Effects of Concentrated Guava Leaves Extract against Human Lung Cancer Cells?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aqueous Guava Leaves Extract Production
2.2. Nanofiltration Concentration Process
2.3. Storage Stability Determination
2.4. Gastrointestinal Behavior Simulation
2.5. Total Phenolic Compound Contents Determination
2.6. Antioxidant Activity Determination
2.7. Cytotoxic Effects Evaluation
2.8. Statistical Analyses
3. Results and Discussion
3.1. Storage Stability Determination
3.2. Gastrointestinal Behavior Simulation
3.3. Cytotoxic Effects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Moreno, T.; Cocero, M.; Rodríguez-Rojo, S. Storage stability and simulated gastrointestinal release of spray dried grape marc phenolics. Food Bioprod. Process. 2018, 112, 96–107. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Yáñez-Fernández, J.; Fíla, V. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview. Food Chem. 2016, 213, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Arend, G.D.; Adorno, W.T.; Rezzadori, K.; Di Luccio, M.; Chaves, V.C.; Reginatto, F.H.; Petrus, J.C.C. Concentration of phenolic compounds from strawberry (Fragaria X ananassa Duch) juice by nanofiltration membrane. J. Food Eng. 2017, 201, 36–41. [Google Scholar] [CrossRef]
- Avram, A.M.; Morin, P.; Brownmiller, C.; Howard, L.R.; Sengupta, A.; Wickramasinghe, S.R. Concentrations of polyphenols from blueberry pomace extract using nanofiltration. Food Bioprod. Process. 2017, 106, 91–101. [Google Scholar] [CrossRef]
- Balyan, U.; Sarkar, B. Integrated membrane process for purification and concentration of aqueous Syzygium cumini (L.) seed extract. Food Bioprod. Process. 2016, 98, 29–43. [Google Scholar] [CrossRef]
- Pereira, D.T.V.; Marson, G.V.; Barbero, G.F.; Tarone, A.G.; Cazarin, C.B.B.; Hubinger, M.D.; Martínez, J. Concentration of bioactive compounds from grape marc using pressurized liquid extraction followed by integrated membrane processes. Sep. Purif. Technol. 2020, 250, 117206. [Google Scholar] [CrossRef]
- Tonova, K.; Lazarova, M.; Dencheva-Zarkova, M.; Paniovska, S.; Tsibranska, I.; Stanoev, V.; Dzhonova, D.; Genova, J. Separation of glucose, other reducing sugars and phenolics from natural extract by nanofiltration: Effect of pressure and cross-flow velocity. Chem. Eng. Res. Des. 2020, 162, 107–116. [Google Scholar] [CrossRef]
- Arend, G.D.; Soares, L.S.; Camelo-Silva, C.; Sanches, M.A.R.; Penha, F.M.; Díaz-De-Cerio, E.; Verardo, V.; Prudencio, E.S.; Segura-Carretero, A.; Tischer, B.; et al. Is nanofiltration an efficient technology to recover and stabilize phenolic compounds from guava (Psidium guajava) leaves extract? Food Biosci. 2022, 50, 101997. [Google Scholar] [CrossRef]
- Gutiérrez, R.M.P.; Mitchell, S.; Solis, R.V. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 1–27. [Google Scholar] [CrossRef]
- Almulaiky, Y.; Zeyadi, M.; Saleh, R.; Baothman, O.; Al-Shawafi, W.; Al-Talhi, H. Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatal. Agric. Biotechnol. 2018, 16, 90–97. [Google Scholar] [CrossRef]
- Díaz-De-Cerio, E.; Rodríguez-Nogales, A.; Algieri, F.; Romero, M.; Verardo, V.; Segura-Carretero, A.; Duarte, J.; Galvez, J. The hypoglycemic effects of guava leaf (Psidium guajava L.) extract are associated with improving endothelial dysfunction in mice with diet-induced obesity. Food Res. Int. 2017, 96, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Ruksiriwanich, W.; Khantham, C.; Muangsanguan, A.; Phimolsiripol, Y.; Barba, F.J.; Sringarm, K.; Rachtanapun, P.; Jantanasakulwong, K.; Jantrawut, P.; Chittasupho, C.; et al. Guava (Psidium guajava L.) Leaf Extract as Bioactive Substances for Anti-Androgen and Antioxidant Activities. Plants 2022, 11, 3514. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Pinto, J.; Llorent-Martínez, E.J.; Castilho, P.C. Changes in the phenolic compositions of Elaeagnus umbellata and Sambucus lanceolata after in vitro gastrointestinal digestion and evaluation of their potential anti-diabetic properties. Food Res. Int. 2019, 122, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Jara-Palacios, M.; Gonçalves, S.; Hernanz, D.; Heredia, F.J.; Romano, A. Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Res. Int. 2018, 109, 433–439. [Google Scholar] [CrossRef] [PubMed]
- WHO, World Health Organization. Cancer. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 1 March 2024).
- INCA. Estimativa de Câncer no Brasil. 2023. Available online: https://www.inca.gov.br/numeros-de-cancer (accessed on 1 March 2024).
- Verruck, S.; Prudêncio, E.S.; Vieira, C.R.W.; Amante, E.R.; Amboni, R.D.d.M.C. The buffalo Minas Frescal cheese as a protective matrix of Bifidobacterium BB-12 under in vitro simulated gastrointestinal conditions. LWT Food Sci. Technol. 2015, 63, 1179–1183. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Calixto, F.D.S. Metodologia Científica: Determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS. Comun. Técnico Embrapa 2007, 128, 1–4. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/426954/metodologia-cientifica-determinacao-da-atividade-antioxidante-total-em-frutas-pela-captura-do-radical-livre-abts (accessed on 1 July 2020).
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, C.; Chen, X.; Quek, S.Y. Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. J. Food Eng. 2020, 269, 109744. [Google Scholar] [CrossRef]
- Tsali, A.; Goula, A.M. Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technol. 2018, 340, 194–207. [Google Scholar] [CrossRef]
- Alzate-Arbeláez, A.F.; Dorta, E.; López-Alarcón, C.; Cortés, F.B.; Rojano, B.A. Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chem. 2019, 294, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Dutra, R.L.T.; Dantas, A.M.; de Araújo Marques, D.; Batista, J.D.F.; de Albuquerque Meireles, B.R.L.; de Magalhães Cordeiro, M.T.; Magnani, M.; da Silva Campelo Borges, G. Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Res. Int. 2017, 100, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Lucas-González, R.; Viuda-Martos, M.; Álvarez, J.A.P.; Fernández-López, J. Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion. Food Chem. 2018, 256, 252–258. [Google Scholar] [CrossRef]
- Thomas-Valdés, S.; Theoduloz, C.; Jiménez-Aspee, F.; Schmeda-Hirschmann, G. Effect of simulated gastrointestinal digestion on polyphenols and bioactivity of the native Chilean red strawberry (Fragaria chiloensis ssp. chiloensis f. patagonica). Food Res. Int. 2019, 123, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, K.; Ranaweera, K.; Rupasinghe, H. Change of phenolics, carotenoids, and antioxidant capacity following simulated gastrointestinal digestion and dialysis of selected edible green leaves. Food Chem. 2018, 245, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.-Y.O.; Lima, G.P.P. Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. In Phenolic Compounds—Biological Activity; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Braga, T.V.; das Dores, R.G.; Ramos, C.S.; Evangelista, F.C.; da Silva Tinoco, L.M.; de Pilla Varotti, F.; das Graças Carvalho, M.; de Paula Sabino, A. Antioxidant, Antibacterial and Antitumor Activity of Ethanolic Extract of the Psidium guajava Leaves. Am. J. Plant Sci. 2014, 05, 3492–3500. [Google Scholar] [CrossRef]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides var. fagaroides on Breast Cancer Cell Lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef] [PubMed]
- Sul’ain, M.D.; Zazali, K.E.; Ahmad, N. Screening on Anti-Proliferative Activity of Psidium guajava Leaves Extract towards Selected Cancer Cell Lines. J. US-China Med. Sci. 2012, 9, 30–37. [Google Scholar] [CrossRef]
- Bastos, M.L.C. Avaliação da Citotoxicidade e Seletividade do Extrato, Frações e Alcaloide de Geissospermum Sericeum (Apoc-ynaceae) em Linhagens Celulares ACP02, HepG2 e VERO. Master’s Dissertation, Pharmaceutical Sciences, Universidade Federal do Pará, Belém, Brazil, 2017. [Google Scholar]
- Peng, C.-H.; Chen, K.-C.; Hsieh, C.-L.; Peng, R.Y. The Aqueous Soluble Polyphenolic Fraction of Psidium guajava Leaves Exhibits Potent Anti-Angiogenesis and Anti-Migration Actions on DU145 Cells. Evid.-Based Complement. Altern. Med. 2011, 2011, 219069. [Google Scholar] [CrossRef]
- Kawakami, Y.; Nakamura, T.; Hosokawa, T.; Suzuki-Yamamoto, T.; Yamashita, H.; Kimoto, M.; Tsuji, H.; Yoshida, H.; Hada, T.; Takahashi, Y. Antiproliferative activity of guava leaf extract via inhibition of prostaglandin endoperoxide H synthase isoforms. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 239–245. [Google Scholar] [CrossRef]
- Correa, M.G.; Couto, J.S.; Teodoro, A.J. Anticancer Properties of Psidium guajava—A Mini-Review. Asian Pac. J Cancer Prev. 2016, 17, 4199–4204. [Google Scholar] [PubMed]
Step | TPC Recovery (%) | ||
---|---|---|---|
NC | C10 | C20 | |
Initial | 100 a | 100 a | 100 a |
Mouth | 96 a ± 5.0 | 99 a ± 1.5 | 95 a ± 0.7 |
Stomach | 92 a ± 5.7 | 94 ab ± 0.8 | 77 b ± 1.3 |
Duodenum | 92 a ± 4.6 | 89 b ± 1.3 | 72 b ± 8.5 |
Ileum | 86 a ± 4.1 | 88 b ± 4.0 | 71 b ± 4.9 |
Extracts | A549 Cells | Vero Cells | SI |
---|---|---|---|
No Treatment | |||
NC | 5.32 ± 1.15 | 29.46 ± 10.28 | 5.54 |
C10 | 0.27 ± 0.24 | 27.04 ± 4.64 | 100.15 |
C20 | 0.83 ± 1.01 | >50 | >60.24 |
After 125 days of storage | |||
NC | 0.16 ± 0.23 | 0.42 ± 0.93 | 2.62 |
C10 | 0.45 ± 0.37 | 2.10 ± 2.56 | 4.67 |
C20 | 0.26 ± 0.34 | 0.66 ± 1.39 | 2.54 |
After gastrointestinal simulation | |||
NC | 18.35 ± 30.09 | 37.80 ± 10.27 | 2.06 |
C10 | 4.17 ± 2.73 | 28.84 ± 24.83 | 6.92 |
C20 | 2.49 ± 1.22 | 16.97 ± 10.09 | 6.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demaman Arend, G.; Verruck, S.; Zanchett Schneider, N.F.; Oliveira Simões, C.M.; Tres, M.V.; Prudêncio, E.S.; Cunha Petrus, J.C.; Rezzadori, K. Can Storage Stability and Simulated Gastrointestinal Behavior Change the Cytotoxic Effects of Concentrated Guava Leaves Extract against Human Lung Cancer Cells? Membranes 2024, 14, 113. https://doi.org/10.3390/membranes14050113
Demaman Arend G, Verruck S, Zanchett Schneider NF, Oliveira Simões CM, Tres MV, Prudêncio ES, Cunha Petrus JC, Rezzadori K. Can Storage Stability and Simulated Gastrointestinal Behavior Change the Cytotoxic Effects of Concentrated Guava Leaves Extract against Human Lung Cancer Cells? Membranes. 2024; 14(5):113. https://doi.org/10.3390/membranes14050113
Chicago/Turabian StyleDemaman Arend, Giordana, Silvani Verruck, Naira Fernanda Zanchett Schneider, Cláudia Maria Oliveira Simões, Marcus Vinícius Tres, Elane Schwinden Prudêncio, José Carlos Cunha Petrus, and Katia Rezzadori. 2024. "Can Storage Stability and Simulated Gastrointestinal Behavior Change the Cytotoxic Effects of Concentrated Guava Leaves Extract against Human Lung Cancer Cells?" Membranes 14, no. 5: 113. https://doi.org/10.3390/membranes14050113
APA StyleDemaman Arend, G., Verruck, S., Zanchett Schneider, N. F., Oliveira Simões, C. M., Tres, M. V., Prudêncio, E. S., Cunha Petrus, J. C., & Rezzadori, K. (2024). Can Storage Stability and Simulated Gastrointestinal Behavior Change the Cytotoxic Effects of Concentrated Guava Leaves Extract against Human Lung Cancer Cells? Membranes, 14(5), 113. https://doi.org/10.3390/membranes14050113