Simultaneously Enhanced Permeability and Selectivity of Pebax-1074-Based Mixed-Matrix Membrane for CO2 Separation
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of KAUST-8
2.3. Preparation of KAUST-8@BPEI
2.4. Membranes Fabrication
2.5. Gas Permeation Measurements
2.6. Characterizations
3. Results and Discussion
3.1. Characterization of KAUST-8@BPEI
3.2. Characterization of MMMs
3.3. Separation Performance
3.3.1. Loading Effect
3.3.2. BPEI Effect
3.3.3. Pressure, Temperature Effect and Long-Term Stability
3.4. Separation Mechanism
3.5. Comparison with Other Membrane Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BPEI | Branched polyethyleneimine | 
| D | Diffusion coefficient | 
| FESEM | Field emission scanning electron microscopes | 
| FTIR | Fourier transform infrared | 
| HCP | Hyper-cross-linked polymer | 
| HF | Hydrofluoric acid | 
| IPCC | Intergovernmental Panel on Climate Change | 
| KAUST-8 | AIFFIVE-1-Ni | 
| MMMs | Mixed-matrix membranes | 
| MOF | Metal–organic framework | 
| P | Permeability | 
| PAF | Porous aromatic framework | 
| PEO | Polyethylene oxide | 
| PTMSP | Poly(1-trimethylsilyl1-propyne) | 
| S | Solution coefficient | 
| TGA | Thermogravimetric analysis | 
| XLPEO | Crosslinked poly(ethylene oxide) | 
| XPS | X-ray photoelectron spectroscopy | 
| XRD | X-ray diffraction | 
References
- Climate Change 2022: Mitigation of Climate Change. Working Group III Contribution to the IPCC Sixth Assessment Report. 2022. Available online: https://www.ipcc.ch/report/ar6/wg3/chapter/chapter-1/ (accessed on 2 June 2024).
- Vitillo, J.G.; Eisaman, M.D.; Aradóttir, E.S.P.; Passarini, F.; Wang, T.; Sheehan, S.W. The Role of Carbon Capture, Utilization, and Storage for Economic Pathways That Limit Global Warming to below 1.5 °C. iScience 2022, 25, 104237. [Google Scholar] [CrossRef]
- Raganati, F.; Ammendola, P. CO2 Post-Combustion Capture: A Critical Review of Current Technologies and Future Directions. Energy Fuels 2024, 38, 13858–13905. [Google Scholar] [CrossRef]
- Hou, R.; Yu, J.; Xie, J.; Gu, Y.; Wang, L.; Zhao, B.; Pan, Y. Membrane Technology for Carbon Capture Sequestration and Direct Air Capture—Current Status and Perspective. Sep. Purif. Technol. 2025, 360, 131077. [Google Scholar] [CrossRef]
- Cheng, Y.; Datta, S.J.; Zhou, S.; Jia, J.; Shekhah, O.; Eddaoudi, M. Advances in Metal-Organic Framework-Based Membranes. Chem. Soc. Rev. 2022, 51, 8300–8350. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Fong, C.; Freeman, B.D.; Hill, M.R.; Xie, Z. Current Status and Advances in Membrane Technology for Carbon Capture. Sep. Purif. Technol. 2022, 300, 121863. [Google Scholar] [CrossRef]
- Baker, R.W.; Freeman, B.; Kniep, J.; Huang, Y.I.; Merkel, T.C. CO2 Capture from Cement Plants and Steel Mills Using Membranes. Ind. Eng. Chem. Res. 2018, 57, 15963–15970. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the Right Stuff: The Trade-off between Membrane Permeability and Selectivity. Science 2017, 356, eaab0530. [Google Scholar] [CrossRef]
- Robeson, L.M. The Upper Bound Revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Robeson, L.M.; Liu, Q.; Freeman, B.D.; Paul, D.R. Comparison of Transport Properties of Rubbery and Glassy Polymers and the Relevance to the Upper Bound Relationship. J. Membr. Sci. 2015, 476, 421–431. [Google Scholar] [CrossRef]
- Hou, R.; Smith, S.J.D.; Konstas, K.; Doherty, C.M.; Easton, C.D.; Park, J.; Yoon, H.; Wang, H.; Freeman, B.D.; Hill, M.R. Synergistically Improved PIM-1 Membrane Gas Separation Performance by PAF-1 Incorporation and UV Irradiation. J. Mater. Chem. A 2022, 10, 10107–10119. [Google Scholar] [CrossRef]
- Kamble, A.R.; Patel, C.M.; Murthy, Z.V.P. A Review on the Recent Advances in Mixed Matrix Membranes for Gas Separation Processes. Renew. Sustain. Energy Rev. 2021, 145, 111062. [Google Scholar] [CrossRef]
- Ozcan, A.; Fan, D.; Datta, S.J.; Diaz-Marquez, A.; Semino, R.; Cheng, Y.; Joarder, B.; Eddaoudi, M.; Maurin, G. Tuning MOF/Polymer Interfacial Pore Geometry in Mixed Matrix Membrane for Upgrading CO2 Separation Performance. Sci. Adv. 2024, 10, eadk5846. [Google Scholar] [CrossRef] [PubMed]
- Belmabkhout, Y.; Zhang, Z.; Adil, K.; Bhatt, P.M.; Cadiau, A.; Solovyeva, V.; Xing, H.; Eddaoudi, M. Hydrocarbon Recovery Using Ultra-Microporous Fluorinated MOF Platform with and without Uncoordinated Metal Sites: I- Structure Properties Relationships for C2H2/C2H4 and CO2/C2H2 Separation. Chem. Eng. J. 2019, 359, 32–36. [Google Scholar] [CrossRef]
- Zheng, W.; Ding, R.; Li, Z.; Ruan, X.; Dai, Y.; Yu, M.; Li, X.; Yan, X.; Jiang, X.; Zhang, X.; et al. Highspeed Transport Pathway Dominated by Continuous Arrangement of Micron-Sized Hollow MOFs in MMMs to Accelerate CO2 Permeation. Chem. Eng. J. 2024, 490, 151639. [Google Scholar] [CrossRef]
- Gou, M.; Guo, R.; Cao, H.; Zhu, W.; Liu, F.; Wei, Z. An MOF-Tailored Hierarchical Porous Microenvironment for CO2 as an Efficient Filler for Mixed Matrix Membranes. Chem. Eng. J. 2022, 438, 135651. [Google Scholar] [CrossRef]
- Ding, R.; Dai, Y.; Zheng, W.; Li, X.; Yan, X.; Liu, Y.; Ruan, X.; Li, S.; Yang, X.; Yang, K.; et al. Vesicles-Shaped MOF-Based Mixed Matrix Membranes with Intensified Interfacial Affinity and CO2 Transport Freeway. Chem. Eng. J. 2021, 414, 128807. [Google Scholar] [CrossRef]
- Liu, G.; Cadiau, A.; Liu, Y.; Adil, K.; Chernikova, V.; Carja, I.-D.; Belmabkhout, Y.; Karunakaran, M.; Shekhah, O.; Zhang, C.; et al. Enabling Fluorinated MOF-Based Membranes for Simultaneous Removal of H2S and CO2 from Natural Gas. Angew. Chem. Int. Ed. Engl. 2018, 57, 14811–14816. [Google Scholar] [CrossRef]
- Tchalala, M.R.; Bhatt, P.M.; Chappanda, K.N.; Tavares, S.R.; Adil, K.; Belmabkhout, Y.; Shkurenko, A.; Cadiau, A.; Heymans, N.; De Weireld, G.; et al. Fluorinated MOF Platform for Selective Removal and Sensing of SO2 from Flue Gas and Air. Nat. Commun. 2019, 10, 1328. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.J.; Mayoral, A.; Murthy Srivatsa Bettahalli, N.; Bhatt, P.M.; Karunakaran, M.; Carja, I.D.; Fan, D.; Graziane M. Mileo, P.; Semino, R.; Maurin, G.; et al. Rational Design of Mixed-Matrix Metal-Organic Framework Membranes for Molecular Separations. Science 2022, 376, 1080–1087. [Google Scholar] [CrossRef]
- Cadiau, A.; Belmabkhout, Y.; Adil, K.; Bhatt, P.M.; Pillai, R.S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M. Hydrolytically Stable Fluorinated Metal-Organic Frameworks for Energy-Efficient Dehydration. Science 2017, 356, 731–735. [Google Scholar] [CrossRef]
- Belmabkhout, Y.; Bhatt, P.M.; Adil, K.; Pillai, R.S.; Cadiau, A.; Shkurenko, A.; Maurin, G.; Liu, G.; Koros, W.J.; Eddaoudi, M. Natural Gas Upgrading Using a Fluorinated MOF with Tuned H2S and CO2 Adsorption Selectivity. Nat. Energy 2018, 3, 1059–1066. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, Q.; Kong, C.; Chen, L. Polyethyleneimine Incorporated Metal-Organic Frameworks Adsorbent for Highly Selective CO2 Capture. Sci. Rep. 2013, 3, 1859. [Google Scholar] [CrossRef] [PubMed]
- Knebel, A.; Bavykina, A.; Datta, S.J.; Sundermann, L.; Garzon-Tovar, L.; Lebedev, Y.; Durini, S.; Ahmad, R.; Kozlov, S.M.; Shterk, G.; et al. Solution Processable Metal-Organic Frameworks for Mixed Matrix Membranes Using Porous Liquids. Nat. Mater. 2020, 19, 1346–1353. [Google Scholar] [CrossRef]
- Li, X.; Yao, D.; Wang, D.; He, Z.; Tian, X.; Xin, Y.; Su, F.; Wang, H.; Zhang, J.; Li, X.; et al. Amino-Functionalized ZIFs-Based Porous Liquids with Low Viscosity for Efficient Low-Pressure CO2 Capture and CO2/N2 Separation. Chem. Eng. J. 2022, 429, 132296. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Dong, G.; Scholes, C.; Chen, V. Effect of Fabrication and Operation Conditions on CO2 Separation Performance of PEO-PA Block Copolymer Membranes. Ind. Eng. Chem. Res. 2015, 54, 7273–7283. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, Y.; Wu, Y.; Zhang, B. Fabrication of Pebax/SAPO Mixed Matrix Membranes for CO2/N2 Separation. J. Appl. Polym. Sci. 2021, 138, 51336. [Google Scholar] [CrossRef]
- Azizi, N.; Mohammadi, T.; Behbahani, R.M. Synthesis of a PEBAX-1074/ZnO Nanocomposite Membrane with Improved CO2 Separation Performance. J. Energy. Chem. 2017, 26, 454–465. [Google Scholar] [CrossRef]
- Hou, R.; Wang, S.; Wang, L.; Li, C.; Wang, H.; Xu, Y.; Wang, C.; Pan, Y.; Xing, W. Enhanced CO2 Separation Performance by Incorporating KAUST-8 Nanosheets into Crosslinked Poly(Ethylene Oxide) Membrane. Sep. Purif. Technol. 2023, 309, 123057. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, J.; Lin, R.; Zhu, Y.; Wu, J.; Hou, R.; Niu, R.; Pan, Y. Building Extra Transport Channels in Mixed-Matrix Membrane for Air Dehumidification. J. Environ. Chem. Eng. 2024, 12, 112969. [Google Scholar] [CrossRef]
- Liu, B.; Li, D.; Yao, J.; Sun, H. Enhanced CO2 Selectivity of Polyimide Membranes through Dispersion of Polyethyleneimine Decorated UiO-66 Particles. J. Appl. Polym. Sci. 2020, 137, 49068. [Google Scholar] [CrossRef]
- Panta, J.; Rider, A.N.; Wang, J.; Yang, R.; Brack, N.; Zhang, Y.X. Grafting of Branched Polyethyleneimine onto Carbon Nanotubes to Efficiently Enhance the Lap Shear Strength of Epoxy Adhesives. Appl. Surf. Sci. 2023, 634, 157691. [Google Scholar] [CrossRef]
- Abd El-Mongy, S.; Seoudi, R.; Hussein, A.M. The Influence of Branched Polyethyleneimine Concentration on the Spectroscopic and Morphology of BPEI/AuNPs for Photocatalytic Reduction of 4-Nitrophenol. J. Mater. Sci. Mater. Electron. 2024, 35, 1440. [Google Scholar] [CrossRef]
- Hou, R.; Smith, S.J.D.; Wood, C.D.; Mulder, R.J.; Lau, C.H.; Wang, H.; Hill, M.R. Solvation Effects on the Permeation and Aging Performance of PIM-1-Based MMMs for Gas Separation. ACS Appl. Mater. Interfaces. 2019, 11, 6502–6511. [Google Scholar] [CrossRef] [PubMed]
- Atash Jameh, A.; Mohammadi, T.; Bakhtiari, O. Preparation of PEBAX-1074/Modified ZIF-8 Nanoparticles Mixed Matrix Membranes for CO2 Removal from Natural Gas. Sep. Purif. Technol. 2020, 231, 115900. [Google Scholar] [CrossRef]
- Azizi, S.; Azizi, N.; Homayoon, R. Experimental Study of CO2 and CH4 Permeability Values Through Pebax®-1074/Silica Mixed Matrix Membranes. Silicon 2019, 11, 2045–2057. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, B.; Zheng, Y.; Wu, Y. Highly Permselective Pebax/MWCNTs Mixed Matrix Membranes for CO2/N2 Separation. Polym. Bull. 2024, 81, 9699–9719. [Google Scholar] [CrossRef]
- Ortiz-Albo, P.; Alves, V.D.; Kumakiri, I.; Crespo, J.; Neves, L.A. A Greener Route to Prepare PEBAX®1074 Membranes for Gas Separation Processes. J. Membr. Sci. 2024, 693, 122346. [Google Scholar] [CrossRef]
- Ariazadeh, M.; Farashi, Z.; Azizi, N.; Khajouei, M. Influence of functionalized SiO2 nanoparticles on the morphology and CO2/CH4 separation efficiency of Pebax-based mixed-matrix membranes. Korean J. Chem. Eng. 2020, 37, 295–306. [Google Scholar] [CrossRef]
- Wu, L.; Sun, J.; Zhu, W.; Wang, C.; Zhang, L.; Niu, R.; Hou, R.; Pan, Y. Constructing Molecular Sieve Channels in Mixed Matrix Membranes for Efficient CO2 Separation. Ind. Eng. Chem. Res. 2024, 63, 7760–7768. [Google Scholar] [CrossRef]
- Azizi, N.; Mohammadi, T.; Mosayebi Behbahani, R. Comparison of Permeability Performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 Nanocomposite Membranes for CO2/CH4 Separation. Chem. Eng. Res. Des. 2017, 117, 177–189. [Google Scholar] [CrossRef]
- Fan, S.-T.; Tan, M.; Liu, W.-T.; Li, B.-J.; Zhang, S. MOF-Layer Composite Polyurethane Membrane Increasing Both Selectivity and Permeability: Pushing Commercial Rubbery Polymer Membranes to Be Attractive for CO2 Separation. Sep. Purif. Technol. 2022, 297, 121452. [Google Scholar] [CrossRef]
- Feng, X.; Qin, Z.; Lai, Q.; Zhang, Z.; Shao, Z.-W.; Tang, W.; Wu, W.; Dai, Z.; Liu, C. Mixed-Matrix Membranes Based on Novel Hydroxamate Metal-Organic Frameworks with Two-Dimensional Layers for CO2/N2 Separation. Sep. Purif. Technol. 2023, 305, 122476. [Google Scholar] [CrossRef]
- Meshkat, S.; Kaliaguine, S.; Rodrigue, D. Mixed Matrix Membranes Based on Amine and Non-Amine MIL-53(Al) in Pebax® MH-1657 for CO2 Separation. Sep. Purif. Technol. 2018, 200, 177–190. [Google Scholar] [CrossRef]
- Azizi, N.; Jahanmahin, O.; Homayoon, R.; Khajouei, M. A New Ternary Mixed-Matrix Membrane (PEBAX/PEG/MgO) to Enhance CO2/CH4 and CO2/N2 Separation Efficiency. Korean J. Chem. Eng. 2023, 40, 1457–1473. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, Y.; Sun, J.; Liu, Y.; Zhong, Y.; Du, W.; Lan, J. An Experimental Study of Membranes for Capturing Water Vapor from Flue Gas. J. Energy. Inst. 2018, 91, 339–348. [Google Scholar] [CrossRef]
- Casadei, R.; Giacinti Baschetti, M.; Yoo, M.J.; Park, H.B.; Giorgini, L. Pebax® 2533/Graphene Oxide Nanocomposite Membranes for Carbon Capture. Membranes 2020, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Ding, R.; Yang, K.; Dai, Y.; Yan, X.; He, G. ZIF-8 Nanoparticles with Tunable Size for Enhanced CO2 Capture of Pebax Based MMMs. Sep. Purif. Technol. 2019, 214, 111–119. [Google Scholar] [CrossRef]
- Aghaei, Z.; Naji, L.; Hadadi Asl, V.; Khanbabaei, G.; Dezhagah, F. The Influence of Fumed Silica Content and Particle Size in Poly (Amide 6-b-Ethylene Oxide) Mixed Matrix Membranes for Gas Separation. Sep. Purif. Technol. 2018, 199, 47–56. [Google Scholar] [CrossRef]
- Shamsabadi, A.A.; Seidi, F.; Salehi, E.; Nozari, M.; Rahimpour, A.; Soroush, M. Efficient CO2-Removal Using Novel Mixed-Matrix Membranes with Modified TiO2 Nanoparticles. J. Mater. Chem. A 2017, 5, 4011–4025. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, W.; Yang, X.; Ning, M.; Li, X.; Xi, Y.; Yan, X.; Zhang, X.; Dai, Y.; Liu, H.; et al. Pebax-Based Mixed Matrix Membranes Derived from Microporous Carbon Nanospheres for Permeable and Selective CO2 Separation. Sep. Purif. Technol. 2021, 274, 119015. [Google Scholar] [CrossRef]
- Shi, F.; Sun, J.; Wang, J.; Liu, M.; Yan, Z.; Zhu, B.; Li, Y.; Cao, X. MXene versus Graphene Oxide: Investigation on the Effects of 2D Nanosheets in Mixed Matrix Membranes for CO2 Separation. J. Membr. Sci. 2021, 620, 118850. [Google Scholar] [CrossRef]
- Salehi Maleh, M.; Raisi, A. Comparison of Porous and Nonporous Filler Effect on Performance of Poly (Ether-Block-Amide) Mixed Matrix Membranes for Gas Separation Applications. Chem. Eng. Res. Des. 2019, 147, 545–560. [Google Scholar] [CrossRef]










| Membrane | CO2 Solubility [10−2 cm3(STP)∙cm−3∙cmHg−1] | CO2 Diffusivity [10−8 cm2∙s−1] | N2 Solubility [10−2 cm3(STP)∙cm−3∙cmHg−1] | N2 Diffusivity [10−8 cm2∙s−1] | 
|---|---|---|---|---|
| Pebax | 4.56 | 15.63 | 2.12 | 2.83 | 
| KAUST-8/Pebax-5 | 4.67 | 18.61 | 2.15 | 3.11 | 
| KAUST-8@BPEI/Pebax-5 | 5.23 | 29.92 | 1.58 | 6.14 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, R.; Xie, J.; Gu, Y.; Wang, L.; Pan, Y. Simultaneously Enhanced Permeability and Selectivity of Pebax-1074-Based Mixed-Matrix Membrane for CO2 Separation. Membranes 2025, 15, 26. https://doi.org/10.3390/membranes15010026
Hou R, Xie J, Gu Y, Wang L, Pan Y. Simultaneously Enhanced Permeability and Selectivity of Pebax-1074-Based Mixed-Matrix Membrane for CO2 Separation. Membranes. 2025; 15(1):26. https://doi.org/10.3390/membranes15010026
Chicago/Turabian StyleHou, Rujing, Junwei Xie, Yawei Gu, Lei Wang, and Yichang Pan. 2025. "Simultaneously Enhanced Permeability and Selectivity of Pebax-1074-Based Mixed-Matrix Membrane for CO2 Separation" Membranes 15, no. 1: 26. https://doi.org/10.3390/membranes15010026
APA StyleHou, R., Xie, J., Gu, Y., Wang, L., & Pan, Y. (2025). Simultaneously Enhanced Permeability and Selectivity of Pebax-1074-Based Mixed-Matrix Membrane for CO2 Separation. Membranes, 15(1), 26. https://doi.org/10.3390/membranes15010026
 
        




 
       