Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Evaluation of the Technical Feasibility of the Treatment Process of Industrial Effluent for Water Recovery
2.2.1. Physicochemical Characteristics Assessment of the Industrial Effluent
2.2.2. Design and Application of the Process of Effluent Treatment for Water Recovery
2.2.3. Plant Design of the Treatment Process of the Effluent for Water Recovery at Industrial Dimensions
2.3. Economic Analysis of the Treatment Process of the Effluent for Water Recovery
3. Results and Discussion
3.1. Technical Evaluation of the Treatment Process of Industrial Effluent Treatment
3.1.1. Quality Characteristics of Recovered Water from Industrial Effluent Treatment
(1) | |
(2) | |
(3) | |
(4) |
3.1.2. Efficiency of the Treatment Process of the Effluent for Water Recovery
3.1.3. Scaling Up and Plant Design of Treatment Process of Effluent for Water Recovery at Industrial Dimensions
3.2. Economic Analysis of the Process for Water Recovery from Industrial Effluent Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Activated carbon |
ACO | Ozonation catalyzed by activated carbon |
C | Output costs |
CAT | Catalyst |
C0 | Initial investment cost |
CF | Cash flow |
COD | Chemical oxygen demand (g/L) |
EC | Electrical conductivity (mS/cm) |
F | Inflation rate (%) |
FO | Forward osmosis |
GAC | Granular activated carbon |
I | Input costs |
IEXR | Ion exchange resins |
IRR | Internal rate of return (%) |
MARR | Minimum acceptable rate of return (%) |
MD | Membrane distillation |
MF | Microfiltration |
ND | Not detected |
NF | Nanofiltration |
NPV | Net present value |
O3 | Ozone |
RO | Reverse osmosis |
SEM | Scanning electron microscopy |
SO | Single ozonation |
TDS | Total dissolved solids (g/L) |
TS | Total Solids (g/L) |
UF | Ultrafiltration |
USD | United States Dollar |
WWTP | Wastewater treatment plant |
References
- Hernández, K.; Muro, C.; Ortega, R.E.; Velazquez, S.; Riera, F. Water recovery by treatment of food industry wastewater using membrane processes. Environ. Technol. 2019, 42, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, S.; Quiroga, A.J.; Egea-Corbacho, L. Removal of emerging contaminants from wastewater using reverse osmosis for its subsequent reuse: Pilot plant. J. Water Process Eng. 2019, 29, 100800. [Google Scholar] [CrossRef]
- Ozbey-Unal, B.; Omwene, P.I.; Yagcioglu, M.; Balcik-Canboalt, C.; Karagunduz, A.; Keskinler, B.; Dizge, N. Treatment of organized industrial zone wastewater by microfiltration/reverse osmosis membrane process for water recovery. From lab to pilot scale. J. Water Process Eng. 2020, 38, 101646. [Google Scholar] [CrossRef]
- Hernández, K.; Muro, C.; Monroy, O.; Diaz-Blancas, V.; Alvarado, Y.; Díaz, M.d.C. Membrane Water Treatment for Drinking Water Production from an Industrial Effluent Used in the Manufacturing of Food Additives. Membranes 2022, 12, 742. [Google Scholar] [CrossRef] [PubMed]
- Montero-Guadarrama, I.; Muro, C.; Calvo, A.D.; Díaz-Blancas, V.; Hernández, K.; Monroy-Hermosillo, O.A. Food industrial effluent treatment for water recovery and reuse. Techno, economic, and environmental analysis. Rev. Mex. Ing. Quim. 2024, 23, Alim24249. [Google Scholar] [CrossRef]
- Venzke, C.D.; Giacobbo, A.; Zoppas Ferreira, J.; Moura, B.A.; Siqueira Rodrigues, M.A. Increasing Water Recovery Rate of Membrane Hybrid process on the Petrochemical Wastewater Treatment. Process Saf. Environ. Prot. 2018, 117, 152–158. [Google Scholar] [CrossRef]
- Santos, P.G.; Scherer, C.M.; Fisch, A.G.S.; Rodrigues, M.A. Petrochemical wastewater treatment: Water recovery using membrane distillation. Clean. Prod. 2020, 267, 121985. [Google Scholar] [CrossRef]
- Günes, E.; Gönder, B. Evaluation of the hybrid system combining electrocoagulation, nanofiltration, and reverse osmosis for biologically treated textile effluent: Treatment efficiency and membrane fouling. J. Environ. Manag. 2021, 294, 113042. [Google Scholar] [CrossRef]
- Mohan, S.; Oke, N. Application of the Optimized Pre-ozonation Treatment for Potential Resource Recovery from Industrial Textile Effluent. Ozone Sci. Eng. 2021, 44, 236–249. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Fang, F.; Wu, X.; Xin, J.; Sun, S.; Wei, Y.; Ruan, R.; Chen, P.; Wang, Y.; et al. Influence of nanofiltration concentrate recirculation on performance and economic feasibility of a pilot-scale membrane bioreactor-nanofiltration hybrid process for textile wastewater treatment with high water recovery. J. Clean. Prod. 2020, 261, 121067. [Google Scholar] [CrossRef]
- Nazia, S.; Sahu, N.; Jegatheesan, V.; Bhargava, S.K.; Sridhar, S. Integration of ultrafiltration membrane process with chemical coagulation for proficient treatment of old industrial landfill leachate. Chem. Eng. J. 2021, 412, 128598. [Google Scholar] [CrossRef]
- Ankoliya, D.; Mudgal, A.; Sinha, M.K.; Davies, P.; Park, K.; Rodríguez Alegre, R.; Patel, V.; Patel, J. Techno-economic analysis of integrated bipolar membrane electrodialysis and batch reverse osmosis for water and chemical recovery from daisy wastewater. J. Clean. Prod. 2023, 420, 138264. [Google Scholar] [CrossRef]
- Oke, E.O.; Aru, O.E.; Nzeribe, I.; Adeyi, O.; Okolo, B.I.; Adeyi, J.A.; Salam, K.; Adeniram, J.; Araromi, D.O. Computer-aided batch process design, techno-economic and uncertainty analyses of bio-clarifed water recovery from south-eastern Nigerian brewery wastewater. Clean. Environ. Syst. 2023, 11, 100138. [Google Scholar] [CrossRef]
- Tripathi, P.; Tiwari, S.; Tiwari, H.; Sonwani, R.K.; Singh, R.S. Techno-economic assessment of coupling ozonation and biodegradation process for dye wastewater treatment. J. Water Process Eng. 2023, 56, 104286. [Google Scholar] [CrossRef]
- Barros, A.; Giacobbo, A.; Siqueira, M.A.; Moura, A. Elctrodeionization for Wastewater Reuse in Petrochemical Plants. Water 2024, 16, 401. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Lipps, W.C.B.T., Braun-Howland, E.B., Eds.; American Public Health Association: Washington DC, DC, USA, 2023; ISSN 55-1979. [Google Scholar]
- NMX-AA-017-SCFI-2021. Análisis de Agua-Medición de Color Verdadero en Aguas Naturales, Residuales, Residuales Tratadas y Marinas-Mediante Coeficientes de Absorción Espectral-Método de Prueba. Available online: https://biblioteca.semarnat.gob.mx/janium/Documentoos/Ciga/agenda/DOFsr/nNMX-AA-017-SCFI-2021.pdf (accessed on 17 October 2023).
- Norma Oficial Mexicana NOM-001-SEMARNAT-2021, que Establece los Límites Permisibles de Contaminantes en las Descargas de Aguas Residuales en Cuerpos Receptores Propiedad de la Nación: DOF—Norma Oficial Mexicana NOM 001-SEMARNAT-2021 (SEGOB). Available online: https://agua.org.mx (accessed on 17 October 2023).
- Vega-Álvarez, M.; Muro, C.; Montero-Guadarrama, I.; Diaz-Blancas, V. Food Industrial Effluent treatment with Oxygen and Ozone Using Activated Carbon for Catalytic Oxidation. Ozone Sci. Eng. 2023, 46, 242–254. [Google Scholar] [CrossRef]
- Ball, P. Scale-up and scale-down of membrane-based separation processes. Membr. Technol. 2000, 2000, 10–13. [Google Scholar] [CrossRef]
- Ozone. Dimensionamiento de Equipos de Ozono. Available online: https://es.absoluteozone.com/biblioteca/dimensionamiento-de-equipos-de-ozono/ (accessed on 6 May 2024).
- CFE. Comisión Federal de Electricidad. Available online: https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCREIndustria/Industria.aspx (accessed on 12 November 2023).
- Martins, A.; Salla, M.R.; Bolanos, M.L. Tratamiento de aguas residuales provenientes de industria de productos de limpieza y desinfectantes por ozonación convencional y catalítica. Ing. Rev. Chil. Ing. 2019, 27, 223–235. [Google Scholar] [CrossRef]
- Venkatesh, S.; Quaff, A.R.; Pandey, N.D.; Venkatesh, K. Impact of Ozonation on Decolourization and Mineralization of Azo Dyes: Biodegradability Enhancement, By-Products Formation, Required Energy and Cost. Ozone Sci. Eng. 2015, 37, 420–430. [Google Scholar] [CrossRef]
- Joseph, C.G.; Farm, Y.Y.; Taufiq-Yap, Y.H.; Pang, C.K.; Nga, J.L.; Li Puma, G. Ozonation treatment processes for the remediation of detergent wastewater. A comprehensive review. Environ. Chem. Eng. 2021, 9, 106099. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic Ozonation for water and wastewater treatment: Recent advances and perspectives. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef] [PubMed]
- Secretaría de Gobernación. Norma Oficial Mexicana NOM-127-SSA1-2021, Agua Para Uso y Consumo Humano. Límites Permisibles de la Calidad del Agua; Secretaría de Gobernación: Mexico City, Mexico, 2021; Available online: https://platiica.economia.gob.mx/normalizacion/nom-127-ssa1-2021/ (accessed on 17 October 2023).
- Cardoso, R.M.; Cardoso, I.M.; Pinto da Silva, L.; Esteves da Silva, J.C. Copper(II)-Doped Carbon Dots as Catalyst for Ozone Degradation of Textile Dyes. Nanomaterials 2022, 12, 1211. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Wang, X.; Chen, Y.; Chen, Y.; Fu, B.; Tu, Y. Reverse Osmosis coupling Multi-Catalytic Ozonation (RO-MCO) in treating printing and dyeing wastewater and membrane concentrate: Removal performance and mechanism. Water Resour. Ind. 2023, 30, 100217. [Google Scholar] [CrossRef]
- Nzaba, S.K.; Mmelesi, O.K.; Malefane, M.E.; Mafa, P.J.; Mamba, B.B.; Kuvarega, A.T. Comparative study of visible-light active BiOI and N,Pd-TiO2 photocatalysts: Catalytic ozonation for dye degradation. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133167. [Google Scholar] [CrossRef]
- Partal, R.; Basturk, I.; Hocaoglu, S.M.; Baban, A.; Yilmaz, E. Recovery of water and reusable salt solution from reverse osmosis brine in textile industry: A case study. Water Resour. Ind. 2022, 27, 100174. [Google Scholar] [CrossRef]
- Luong, V.T.; Cañas, E.E.; Hellriegel, U.; Dinh, D.N.; Tran, H.T.; Figoli, A.; Gabriele, B.; Luu, T.; Hoinkis, J. Modular desalination concept with low-pressure reverse osmosis and capacitive deionization: Performance study of a pilot plant in Vietnam in comparison to seawater reverse osmosis. J. Environ. Manag. 2023, 329, 117078. [Google Scholar] [CrossRef]
- Dévora-Isiordia, G.E.; Villegas-Peralta, Y.; Piña-Martínez, H.A.; Sánchez-Duarte, R.G.; Álvarez-Sánchez, J. Determination of the polarization in a reverse osmosis plant to desalinate seawater. Rev. Mex. Ing. Quím. 2023, 22, Proc2349. [Google Scholar] [CrossRef]
- Álvarez-Sánchez, J.; Dévora-Isiordia, G.E.; Muro, C.; Villegas-Peralta, Y.; Sánchez-Duarte, R.G.; Torres-Valenzuela, P.G.; Pérez-Sicairos, S. Improved Flux Performance in Brakish Water Reverse Osmosis Membranes by modification with ZnO Nanoparticles and Interphase Polymerization. Membranes 2024, 14, 207. [Google Scholar] [CrossRef]
- Vazquez, E.; Muro, C.; Pérez-Sicairos, S.; Alvarado, Y.; Díaz-Blancas, V.; Hernández, K. Synthesis of Responsive Membranes for Water Recovery through Desalination of Saline Industrial Effluents. Sustainability 2024, 16, 5796. [Google Scholar] [CrossRef]
- Banco de México. Informe Trimestral Enero-Marzo 2024. Available online: https://www.banxico.org.mx/publicaciones-y-prensa/informes-trimestrales/%7B41C34CD7-0712-9284-7A3E-F73B56B6746F%7D.pdf (accessed on 29 May 2024).
- Shokouhi, S.B.; Dehghanzadeh, R.; Aslani, H.; Shahmahdi, N. Activated carbon catalyzed ozonation (ACCO) of Reactive Blue 194 azo dye in aqueous saline solution: Experimental parameters, kinetic and analysis of activated carbon properties. J. Water Process Eng. 2020, 35, 101188. [Google Scholar] [CrossRef]
- Bilinska, L.; Blus, K.; Bilinska, M.; Gmurek, M. Industrial Textile Wastewater Ozone Treatment: Catalyst Selection. Catalysts 2020, 10, 611. [Google Scholar] [CrossRef]
- Zagklis, D.P.; Bampos, G. Tertiary Wastewater Treatment Technologies: A Review of Technical, Economic, and Life Cycle Aspects. Processes 2022, 10, 2304. [Google Scholar] [CrossRef]
- Sewilam, H.; Al Bazedi, G. Hybrid BWRO/FO system for high recovery in-land brackish water desalination: Techno-economic assessment. Sust. Water Resour. Manag. 2023, 9, 136. [Google Scholar] [CrossRef]
- Pérez, G.; Gómez, P.; Ortiz, I.; Urtiaga, A. Techno-economic assessment of membrane-based wastewater reclamation process. Desalination 2022, 522, 115409. [Google Scholar] [CrossRef]
- Wu, X.; Ma, S.; Ng, D.; Acharya, D.; Fan, L.; Zongli, X. Enhancing water recovery through integrated graphene oxide-modified forward osmosis and membrane distillation for real textile wastewater treatment. J. Environ. Chem. Eng. 2024, 12, 112512. [Google Scholar] [CrossRef]
Parameter | pH | EC (mS/cm) | TS (g/L) | TDS (g/L) | COD (g/L) | True Colour (m−1). Red Colouration Predominancy | ||
---|---|---|---|---|---|---|---|---|
436 nm | 525 nm | 620 nm | ||||||
Range values | 8–9 | 37–40 | 30–35 | 30–35 | 4–5 | 660 ± 5 | 552 ± 3 | 210 ± 8 |
Oxidation System | ||||||
Ozone process | Column volume (m3) | Fed flow effluent (m3/h) | Operating temperature range (°C) | Effluent pH | Ozone flow (g/m3) | AC volume (m3) |
SO | 0.0012 | 0.001 | 18–21 | 8–9 | 6.6 | 0 |
ACO | 0.0012 | 0.001 | 18–21 | 8–9 | 6.6 | 0.0003 |
RO System | ||||||
RO process | Material | Lineal Flow velocity (m3/m2h) | Operating temperature and pressure range | pH | Feed flow effluent (m3/h) | Percentage of Permeate |
Membrane process | Composite polyamide membrane 0.030 m2 | <0.04 | 21–24 °C 9–10 bar | 8–9 | <0.001 | <75 |
Parameters | Fed Industrial Effluent | Treated Industrial Effluent | |||||
---|---|---|---|---|---|---|---|
SO | ACO | SO-RO | ACO-RO | SRO | |||
pH | 7.5–8.0 | 7.0–7.5 | 8.5–9.0 | 7.0–8.0 | 7.0–8.0 | 8.0–9.0 | |
EC (mS/cm) | 26–30 | 25–30 | 18–20 | 0.5–1.0 | 0.2–0.5 | 3–5 | |
TS (g/L) | 20–25 | 20–25 | 18–24 | 1.0–1.2 | 0.6–1.0 | 1.0–1.5 | |
TDS (g/L) | 20–25 | 20–25 | 18–20 | 0.8–1.0 | 0.6–0.8 | 1.0–1.5 | |
COD (g/L) | 3–4 | 0.5–1.0 | 0.1–0.2 | ND | ND | 1.0–2.0 | |
True colour m−1 | 436 nm | 560–563 | 15–20 | 5–10 | ND | ND | ND |
525 nm | 452–455 | 3–4 | 0–1 | ND | ND | ND | |
620 nm | 110–111 | 2–3 | 1–2 | ND | ND | ND |
SO | Colourants + •OH → Oxidized products | (5) |
Colourants + O3 Oxidazed products | (6) | |
ACO | (7) | |
(8) | ||
(9) | ||
(10) |
Process | ACO-RO | SO-RO | SRO | |||
---|---|---|---|---|---|---|
Equipment and Consumables | Laboratory | Industrial | Laboratory | Industrial | Laboratory | Industrial |
Feed flow of industrial effluent (m3/h) | 0.001 | 10 | 0.001 | 10 | 0.001 | 10 |
Ozone column volume (m3) | 0.0012 | 6 | 0.0012 | 6 | 0 | 0 |
Ozone flow (g/h) | 6.6 | 530 | 6.6 | 530 | 0 | 0 |
Air flow (m3/h) | 0.003 | 30 | 0.003 | 30 | 0 | 0 |
AC volume (m3) | 0.0003 | 1.5 | 0 | 0 | 0 | 0 |
Total active area of RO membrane (m2) | 0.030 | 300 | 0.030 | 300 | 0.030 | 300 |
Active area/membrane | 0.030 | 41 | 0.030 | 41 | 0.030 | 41 |
Diameter size of membrane (m) | 0.0015 | 0.2 | 0.0015 | 0.2 | 0.0015 | 0.2 |
Number of required membranes | 1 | 7 | 1 | 7 | 1 | 7 |
Membrane pressure (bar) | 9 | 9 | 9 | 9 | 9 | 9 |
Clean water flux/membrane (m3/h) | 0.0007 | 1.1 | 0.0006 | 1.0 | 0.0005 | 0.9 |
Total Clean water stream (m3/h) | 0.0007 | 7.7 | 0.0006 | 6.0 | 0.0005 | 5.0 |
Stages of Treatment | Equipment | Equipment Characteristics | Required Units SO/ACO/SRO | Required Area per Unit (m2) | Cost (USD) per Unit |
---|---|---|---|---|---|
Industrial effluent | Storage tank | 300 m3 capacity | 1 | 60 | 5525.8 |
Ozonation | Air compressor | Capacity 1000 L Power 40 HP Pressure range < 1 bar | 1 | 2 | 75,596.7 |
Oxygen generator | Purity of 93 ± 3% Pressure range > 1 bar | 1 | 2.5 | 69,449.7 | |
Ozone generator | 560 g/h Pressure range < 0.6 bar | 1 | 2 | 207,118.0 | |
Centrifugal pump | 7.5 HP, Maximum flow rate of 505 m3/s | 2 | 0.5 | 6012.6 | |
Tank unit (Effluent-ozone) | Filter dimensions | 1 | 1 | 9041.5 | |
Activated carbon filter unit | Flow rate range < 12 m3/h | 1 | 1 | 9041.5 | |
Desalination with RO | Module with 7 RO membranes | Flow rate range < 5 m3/h, Pressure range < 50 bar, Power 70 HP | 1 | 6 | 338,395.7 |
Permeate storage tank | Capacity 200 m3 | 1 | 30 | 2331.1 | |
Reject storage tank | Capacity 200 m3 | 1 | 30 | 2331.1 |
Concept | SO-RO | ACO-RO | SRO |
---|---|---|---|
Total capital investment | USD 856,770.74 | USD 860,407.20 | USD 492,581.20 |
Operating cost/year | USD 129,131.73 | USD 128,483.50 | USD 174,621,324.44 |
Waste disposal | USD 105.0 | USD 145.7 | >USD 3,000,000 |
Cost to treat m3/year | USD 1.4 | USD 1.4 | >USD 1.4 |
MARR | 17.7% | 17.7% | >17.7% |
CF | USD 251,395.0 | USD 251,354.30 | USD 252,500.00 |
NPV | USD 109,652.59 | USD 105,859.67 | >USD 109,652.59 |
Payback period | 3.4 years | 3.4 years | >3.4 years |
IRR | 22.1% | 21.9% | >22.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero-Guadarrama, I.; Muro Urista, C.; Roa-Morales, G.; Gutiérrez Segura, E.E.; Díaz-Blancas, V.; Dévora-Isiordia, G.E.; Álvarez-Sánchez, J. Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses. Membranes 2025, 15, 33. https://doi.org/10.3390/membranes15010033
Montero-Guadarrama I, Muro Urista C, Roa-Morales G, Gutiérrez Segura EE, Díaz-Blancas V, Dévora-Isiordia GE, Álvarez-Sánchez J. Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses. Membranes. 2025; 15(1):33. https://doi.org/10.3390/membranes15010033
Chicago/Turabian StyleMontero-Guadarrama, Ivette, Claudia Muro Urista, Gabriela Roa-Morales, Edith Erialia Gutiérrez Segura, Vianney Díaz-Blancas, Germán Eduardo Dévora-Isiordia, and Jesús Álvarez-Sánchez. 2025. "Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses" Membranes 15, no. 1: 33. https://doi.org/10.3390/membranes15010033
APA StyleMontero-Guadarrama, I., Muro Urista, C., Roa-Morales, G., Gutiérrez Segura, E. E., Díaz-Blancas, V., Dévora-Isiordia, G. E., & Álvarez-Sánchez, J. (2025). Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses. Membranes, 15(1), 33. https://doi.org/10.3390/membranes15010033