A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes
Abstract
1. Introduction
2. Basic Principles of Reverse Osmosis (RO) Membrane
2.1. Membrane Structure and Materials
2.2. Transport Mechanisms
2.3. Pressure-Driven Membrane Process
2.4. Challenges and Improvements
3. End-of-Life (EoL) Reverse Osmosis (RO) Membranes
3.1. Recycling and Transformation Strategies
3.2. Balancing Ecology and Economy
3.3. Regeneration Techniques
3.4. Challenges and Future Directions
4. Fouling of RO Membranes
4.1. Types of Fouling and the Effective Removal Methods
4.2. Mechanisms and Implications
4.3. Mitigation Strategies
4.4. Limitations and Future Perspectives
5. Challenges in Reusing EoL RO Membranes
5.1. Environmental and Economic Challenges
5.2. Technical Challenges
5.3. Social and Regulatory Challenges
6. Technologies and Methods for Reusing EoL RO Membranes
6.1. Conversion to Nanofiltration (NF) and Ultrafiltration (UF) Membranes
6.2. Direct Reuse and Regeneration
6.3. Novel Transformation Techniques
6.4. Environmental and Socioeconomic Considerations
7. Applications of Reused EoL RO Membranes
7.1. Groundwater and Domestic Wastewater Treatment
7.2. Dye/Salt Separation
7.3. Forward Osmosis (FO) Technology
7.4. Brackish Water Desalination
7.5. Regeneration and Upcycling
7.6. Advantages and Disadvantages of Different Approaches of EoL RO Membranes Application
8. Future Prospects and Innovations of EoL RO Membrane Reuse
8.1. Recycling and Conversion Strategies
8.2. Environmental and Economic Benefits
8.3. Current Challenges and Outlook
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, S.; Liao, Z.; Fane, A.; Li, J.; Tang, C.; Zheng, C.; Lin, J.; Kong, L. Engineering antifouling reverse osmosis membranes: A review. Desalination 2021, 499, 114857. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Qalyoubi, L.; Al-Othman, A.; Qasim, M.; Shirazi, M. Insights on the development of enhanced antifouling reverse osmosis membranes: Industrial applications and challenges. Desalination 2023, 553, 116460. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Ladewig, B. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef]
- Mahlangu, O.; Nthunya, L.; Motsa, M.; Morifi, E.; Richards, H.; Mamba, B. Fouling of high pressure-driven NF and RO membranes in desalination processes: Mechanisms and implications on salt rejection. Chem. Eng. Res. Des. 2023, 199, 268–295. [Google Scholar] [CrossRef]
- Unal, B. Membrane autopsy study to characterize fouling type of RO membrane used in an industrial zone wastewater reuse plant. Desalination 2022, 529, 115648. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Yang, B.; Xiao, K.; Zhao, H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. Water Res. 2021, 195, 116976. [Google Scholar] [CrossRef] [PubMed]
- Pype, M.; Donose, B.; Martí, L.; Patureau, D.; Wéry, N.; Gernjak, W. Virus removal and integrity in aged RO membranes. Water Res. 2016, 90, 167–175. [Google Scholar] [CrossRef]
- Liang, S.; Zou, J.; Meng, L.; Fu, K.; Li, X.; Wang, Z. Impacts of High Salinity on Antifouling Performance of Hydrophilic Polymer-Modified Reverse Osmosis (RO) Membrane. J. Membr. Sci. 2024, 708, 123042. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, Y.; Zheng, L.; Cheng, R.; Hua, H. Recycling of aged RO membranes as NF/UF membranes: Biosafety evaluation and aging process. Desalination 2022, 538, 115845. [Google Scholar] [CrossRef]
- Lejarazu-Larrañaga, A.; Landaburu-Aguirre, J.; Senán-Salinas, J.; Ortiz, J.; Molina, S. Thin Film Composite Polyamide Reverse Osmosis Membrane Technology towards a Circular Economy. Membranes 2022, 12, 864. [Google Scholar] [CrossRef]
- De Paula, E.; Amaral, M. Extending the life-cycle of reverse osmosis membranes: A review. Waste Manag. Res. 2017, 35, 456–470. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Chen, J.; Bai, Z.; Wang, X.; Dai, R.; Wang, Z. Recycling of end-of-life polymeric membranes for water treatment: Closing the loop. J. Membr. Sci. Lett. 2023, 3, 100063. [Google Scholar] [CrossRef]
- Lawler, W.; Alvarez-Gaitan, J.; Leslie, G.; Le-Clech, P. Comparative life cycle assessment of end-of-life options for reverse osmosis membranes. Desalination 2015, 357, 45–54. [Google Scholar] [CrossRef]
- Seibel, F.; Giubel, G.; Brião, V.; Shabani, M.; Pontié, M. End-of-life reverse osmosis membranes: Recycle procedure and its applications for the treatment of brackish and surface water. J. Appl. Res. Water Wastewater 2021, 8, 77–87. [Google Scholar] [CrossRef]
- Mejía, H.; Toledo-Alarcón, J.; Rodríguez, B.; Cifuentes, J.; Porré, F.; Loebel, M.; Ovalle, N.; Astudillo, C.; García, A. Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse. Chem. Eng. Res. Des. 2022, 184, 473–487. [Google Scholar] [CrossRef]
- Moreira, V.; Lebron, Y.; De Paula, E.; Santos, L.; Amaral, M. Recycled reverse osmosis membrane combined with pre-oxidation for improved arsenic removal from high turbidity waters and retrofit of conventional drinking water treatment process. J. Clean. Prod. 2021, 312, 127859. [Google Scholar] [CrossRef]
- Senán-Salinas, J.; García-Pacheco, R.; Landaburu-Aguirre, J.; García-Calvo, E. Recycling of end-of-life reverse osmosis membranes: Comparative LCA and cost-effectiveness analysis at pilot scale. Resour. Conserv. Recycl. 2019, 150, 104423. [Google Scholar] [CrossRef]
- Abada, B.; Safarik, J.; Ishida, K.; Chellam, S. Surface characterization of end-of-life reverse osmosis membranes from a full-scale advanced water reuse facility: Combined role of bioorganic materials and silicon on chemically irreversible fouling. J. Membr. Sci. 2022, 653, 120511. [Google Scholar] [CrossRef]
- Park, M.; Pathak, N.; Wang, C.; Tran, V.; Han, D.; Hong, S.; Phuntsho, S.; Shon, H. Fouling of reverse osmosis membrane: Autopsy results from a wastewater treatment facility at central park, Sydney. Desalination 2023, 565, 116848. [Google Scholar] [CrossRef]
- Wang, J.; Xing, J.; Li, G.; Yao, Z.; Ni, Z.; Wang, J.; Liang, S.; Zhou, Z.; Zhang, L. How to extend the lifetime of RO membrane? From the perspective of the end-of-life RO membrane autopsy. Desalination 2023, 561, 116702. [Google Scholar] [CrossRef]
- Moreira, V.; Lebron, Y.; Santos, L.; Amaral, M. Low-cost recycled end-of-life reverse osmosis membranes for water treatment at the point-of-use. J. Clean. Prod. 2022, 362, 132495. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Khraisheh, M. Towards sustainable management of end-of-life membranes: Novel transformation of end of life (EoL) reverse osmosis membranes for efficient dye/salt separation. Desalination 2023, 751, 117104. [Google Scholar] [CrossRef]
- Souza-Chaves, B.; Alhussaini, M.; Felix, V.; Presson, L.; Betancourt, W.; Hickenbottom, K.; Achilli, A. Extending the life of water reuse reverse osmosis membranes using chlorination. J. Membr. Sci. 2021, 642, 119897. [Google Scholar] [CrossRef]
- Hailemariam, R.; Woo, Y.; Damtie, M.; Kim, B.; Park, K.; Choi, J. Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Adv. Colloid Interface Sci. 2019, 276, 102100. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, M.; Bastani, D.; Musavi, S. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review. Desalination 2017, 420, 330–383. [Google Scholar] [CrossRef]
- Guan, K.; Fang, S.; Zhou, S.; Fu, W.; Li, Z.; Gonzales, R.; Xu, P.; Mai, Z.; Hu, M.; Zhang, P.; et al. Thin film composite membrane with improved permeance for reverse osmosis and organic solvent reverse osmosis. J. Membr. Sci. 2023, 688, 122104. [Google Scholar] [CrossRef]
- Biesheuvel, P.; Porada, S.; Elimelech, M.; Dykstra, J.; Ed, R. Tutorial review of reverse osmosis and electrodialysis. J. Membr. Sci. 2022, 647, 120221. [Google Scholar] [CrossRef]
- Wang, L.; Cao, T.; Dykstra, J.; Porada, S.; Biesheuvel, P.; Elimelech, M. Salt and Water Transport in Reverse Osmosis Membranes: Beyond the Solution-Diffusion Model. Environ. Sci. Technol. 2021, 55, 16665–16675. [Google Scholar] [CrossRef]
- Ismail, A.; Matsuura, T. Fundamentals of RO Membrane Separation Process: Problems and Solutions. J. Appl. Membr. Sci. Technol. 2019, 23, 1–14. [Google Scholar] [CrossRef]
- Motsa, M.; Mamba, B.; Thwala, J.; Verliefde, A. Osmotic backwash of fouled FO membranes: Cleaning mechanisms and membrane surface properties after cleaning. Desalination 2017, 402, 62–71. [Google Scholar] [CrossRef]
- Saleh, F.H.; Al-Alawy, A.F. Air sparging as a strategy for optimizing reverse osmosis membrane. J. Ecol. Eng. 2025, 26, 99–107. [Google Scholar] [CrossRef]
- Hilares, R.; Singh, I.; Meza, K.; Andrade, G.; Tanaka, D. Alternative methods for cleaning membranes in water and wastewater treatment. Water Environ. Res. 2022, 94, e10708. [Google Scholar] [CrossRef]
- Zihao, L.; Wang, J.; Cheng, L.; Yang, Q.; Li, P.; Dong, X.; Xu, B.; Zhi, M.; Hao, A.; Ng, H.Y.; et al. Alleviation of RO membrane fouling in wastewater reclamation plants using an enhanced acid-base chemical cleaning method. Water Res. 2024, 261, 122039. [Google Scholar] [CrossRef]
- Yu, T.; Meng, L.; Zhao, Q.B.; Shi, Y.; Hu, H.Y.; Lu, Y. Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation. Water Res. 2017, 113, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Li, E.; Dai, R.; Wang, Z. Efficacies and mechanisms of different cleaning strategies for NF and RO membranes in a full-scale zero liquid discharge system. J. Water Process Eng. 2023, 56, 104308. [Google Scholar] [CrossRef]
- Sanawar, H.; Kim, L.; Farhat, N.; Loosdrecht, M.; Vrouwenvelder, J. Periodic chemical cleaning with urea: Disintegration of biofilms and reduction of key biofilm-forming bacteria from reverse osmosis membranes. Water Res. X 2021, 13, 100117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Liu, H.; Zhou, T.; Wang, Z.; Nghiem, L.; Wang, Q. Biofouling control of reverse osmosis membrane using free ammonia as a cleaning agent. J. Membr. Sci. 2024, 694, 122414. [Google Scholar] [CrossRef]
- Chen, J.; Kim, S.; Ting, Y. Optimization of membrane physical and chemical cleaning by a statistically designed approach. J. Membr. Sci. 2003, 219, 27–45. [Google Scholar] [CrossRef]
- Moradi, M.; Pihlajamäki, A.; Hesampour, M.; Ahlgren, J.; Mänttäri, M. End-of-life RO membranes recycling: Reuse as NF membranes by polyelectrolyte layer-by-layer deposition. J. Membr. Sci. 2019, 584, 300–308. [Google Scholar] [CrossRef]
- Soto-Salcido, L.; Pihlajamäki, A.; Mänttäri, M. Reuse of end-of-life membranes through accelerated polyamide degradation. Waste Manag. 2023, 171, 124–133. [Google Scholar] [CrossRef]
- Chen, J.; Dai, R.; Wang, Z. Closing the loop of membranes by recycling end-of-life membranes: Comparative life cycle assessment and economic analysis. Resour. Conserv. Recycl. 2023, 198, 107153. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Ma, B.; Zou, W.; Zeng, J.; Dai, R.; Wang, Z. Alkaline pre-treatment enables controllable downcycling of Si-Al fouled end-of-life RO membrane to NF and UF membranes. J. Membr. Sci. 2023, 690, 122209. [Google Scholar] [CrossRef]
- Dai, R.; Han, H.; Wang, T.; Li, J.; Tang, C.; Wang, Z. Fouling is the beginning: Upcycling biopolymer-fouled substrates for fabricating high-permeance thin-film composite polyamide membranes. Green Chem. 2021, 23, 1013. [Google Scholar] [CrossRef]
- Senán-Salinas, J.; Blanco, A.; García-Pacheco, R.; Landaburu-Aguirre, J.; García-Calvo, E. Prospective Life Cycle Assessment and economic analysis of direct recycling of end-of-life reverse osmosis membranes based on Geographic Information Systems. J. Clean. Prod. 2020, 282, 124400. [Google Scholar] [CrossRef]
- Tian, C.; Chen, J.; Li, X.; Dai, R.; Wang, Z. Chemical cleaning−solvent treatment−hydrophilic modification strategy for regenerating end-of-life PVDF membrane. J. Membr. Sci. 2023, 669, 121325. [Google Scholar] [CrossRef]
- Tian, C.; Wang, T.; Han, H.; Dai, R.; Wang, Z. Green Solvent Cleaning Removes Irrecoverable Foulants from End-of-Life Membranes in Membrane Bioreactors: Efficacy and Mechanisms. Environ. Sci. Technol. 2022, 56, 12563–12572. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tian, C.; Dai, R.; Wang, Z. Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chin. Chem. Lett. 2024, 35, 109356. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Al-Juboori, R.A.; Khatri, M.; Ahmed, F.E.; Ibrahim, Y.; Hilal, N. Sustainability in Membrane Technology: Membrane Recycling and Fabrication Using Recycled Waste. Membranes 2024, 14, 52. [Google Scholar] [CrossRef]
- Mulyawan, R.; Muarif, A. A Review of Reverse Osmosis Membrane Fouling: Formation and Control. Int. J. Eng. Sci. Inf. Technol. 2021, 3, 110–115. [Google Scholar] [CrossRef]
- Ahmed, M.; Amin, S.; Mohamed, A. Fouling in reverse osmosis membranes: Monitoring, characterization, mitigation strategies and future directions. Heliyon 2023, 9, e14908. [Google Scholar] [CrossRef]
- Tang, F.; Hu, H.; Sun, L.; Sun, Y.; Shi, N.; Crittenden, J. Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation. Water Res. 2016, 90, 329–336. [Google Scholar] [CrossRef]
- Park, D.; Yeo, I.; Lee, J.; Kim, H.; Choi, S.; Kang, S. Combined impacts of aluminum and silica ions on RO membrane fouling in full-scale ultrapure water production facilities. Desalination 2024, 577, 117380. [Google Scholar] [CrossRef]
- Dolar, D.; Gros, M.; Rodríguez-Mozaz, S.; Moreno, J.; Comas, J.; Rodríguez-Roda, I.; Barceló, D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. J. Hazard. Mater. 2012, 239–240, 64–69. [Google Scholar] [CrossRef]
- Mamo, J.; García-Galán, M.; Stefani, M.; Rodríguez-Mozaz, S.; Barceló, D.; Monclús, H.; Rodríguez-Roda, I.; Comas, J. Fate of pharmaceuticals and their transformation products in integrated membrane systems for wastewaterreclamation. Chem. Eng. J. 2018, 331, 450–461. [Google Scholar] [CrossRef]
- Pezeshki, H.; Hashemi, M.; Rajabi, S. Removal of arsenic as a potentially toxic element from drinking water by filtration: A mini review of nanofiltration and reverse osmosis techniques. Heliyon 2023, 9, e14246. [Google Scholar] [CrossRef] [PubMed]
- Alhussaini, M.; Souza-Chaves, B.; Felix, V.; Achilli, A. Comparative analysis of reverse osmosis and nanofiltration for the removal of dissolved contaminants in water reuse applications. Desalination 2024, 586, 117822. [Google Scholar] [CrossRef]
- Alsawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Landaburu-Aguirre, J.; García-Pacheco, R.; Molina, S.; Rodríguez-Sáez, L.; Rabadán, J.; García-Calvo, E. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination 2016, 393, 16–30. [Google Scholar] [CrossRef]
- Morón-López, J.; Nieto-Reyes, L.; Aguado, S.; El-Shehawy, R.; Molina, S. Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability. Chemosphere 2019, 231, 103–112. [Google Scholar] [CrossRef]
- Al-Hamimi, N.; Kyaw, H.; Al-Ghafri, B.; Al-Obaidani, S.; Kharraz, E.; Al-Abri, M. Reuse of End-of-Life Seawater Reverse Osmosis (RO) Membranes for Water Treatment. J. Appl. Membr. Sci. Technol. 2024, 28, 59–84. [Google Scholar] [CrossRef]
- Grossi, L.; Neves, E.; Lange, L.; Amaral, M. Sustainability in reverse osmosis membranes waste management: Environmental and socioeconomic assessment. Desalination 2024, 575, 117338. [Google Scholar] [CrossRef]
- Putri, R.; Widiasa, N.; Susanto, H. A Review: End Of Life Reverse Osmosis Membrane Conversion and its Prospects in the Study of Conversion to Reconditioned Membrane. E3S Web Conf. 2023, 448, 01006. [Google Scholar] [CrossRef]
- Senán-Salinas, J.; Landaburu-Aguirre, J.; Contreras-Martínez, J.; García-Calvo, E. Life Cycle Assessment application for emerging membrane recycling technologies: From reverse osmosis into forward osmosis. Resour. Conserv. Recycl. 2021, 179, 106075. [Google Scholar] [CrossRef]
- Contreras-Martínez, J.; García-Payo, C.; Arribas, P.; Rodríguez-Sáez, L.; Lejarazu-Larrañaga, A.; García-Calvo, E.; Khayet, M. Recycled reverse osmosis membranes for forward osmosis technology. Desalination 2021, 519, 115312. [Google Scholar] [CrossRef]
- Somrani, A.; Mohamed, Z.; Abohelal, K.; Larhrib, S.; Ghaffour, N.; Pontié, M. Transforming end-of-life SWRO desalination membranes into nanofiltration membranes for the treatment of brackish water and wastewater. Sci. Rep. 2025, 15, 4557. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, C.; Sun, J.; Peng, H.; Li, Q.; Hosseini, S.S.; Zhu, Y.; Sun, M.; Ma, B. Membrane recycling and resource utilization: Latest progress and prospects. J. Environ. Sci. 2025, 156, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Paula, E.; Amaral, M. Environmental and economic evaluation of end-of-life reverse osmosis membranes recycling by means of chemical conversion. J. Clean. Prod. 2018, 194, 85–93. [Google Scholar] [CrossRef]
- García-Pacheco, R.; Landaburu-Aguirre, J.; Molina, S.; Rodríguez-Sáez, L.; Teli, S.; García-Calvo, E. Transformation of end-of-life RO membranes into NF and UF membranes: Evaluation of membrane performance. J. Membr. Sci. 2015, 495, 305–315. [Google Scholar] [CrossRef]
- Koo, C.; Mohammad, A.; Suja’, F. Recycling of oleochemical wastewater for boiler feed water using reverse osmosis membranes–A case study. Desalination 2011, 271, 178–186. [Google Scholar] [CrossRef]
- Ahmed, J.; Jamal, Y. A pilot application of recycled discarded RO membranes for low strength gray water reclamation. Environ. Sci. Pollut. Res. 2021, 28, 34042–34050. [Google Scholar] [CrossRef]
- Contreras-Martínez, J.; García-Payo, C.; Khayet, M. Electrospun Nanostructured Membrane Engineering Using Reverse Osmosis Recycled Modules: Membrane Distillation Application. Nanomaterials 2021, 11, 1601. [Google Scholar] [CrossRef]
- Neelamegam, P.; Muthusubramanian, B. A sustainable novel approach of recycling end-of-life reverse osmosis (RO) membrane as additives in concrete and mathematical model with response surface methodology (RSM). Environ. Sci. Pollut. Res. Int. 2024, 31, 19304–19328. [Google Scholar] [CrossRef]
- Pontié, M. Old RO membranes: Solutions for reuse. Desalination Water Treat. 2015, 53, 1492–1498. [Google Scholar] [CrossRef]
Contaminant Type | Effective Removal Methods | References |
---|---|---|
Organic Contaminants (proteins, polysaccharides, and microbial metabolites) | Optimized chemical cleaning, Membrane Bioreactor (MBR) + RO Treatment | [33,53,54] |
Inorganic Contaminants (scaling agents: calcium, magnesium, iron, and other mineral deposits) | Acid–base cleaning (with citric acid, NaCl) | [33,55] |
Heavy Metals (arsenic and other toxic metals) | RO/NF filtration, pre-treatment | [55,56] |
Pharmaceuticals | Membrane Bioreactor (MBR) + RO, high-flux RO/NF | [53,54,56] |
Approach/Reuse Application | Sector/Use Case | Advantages | Disadvantages/Challenges | References |
---|---|---|---|---|
Chemical conversion to UF/NF | Water treatment | High cost savings, environmental benefits | Shorter lifespan than new membranes | [39,67,68] |
Oleochemical wastewater recycling | Industrial water reuse | Effective COD/TDS * reduction | Biofouling, requires frequent cleaning | [69] |
Gray water reclamation | Domestic reuse | Low turbidity, cost-effective, landfill reduction | Limited pilot data, fouling potential | [70] |
Membrane distillation (MD) support | Desalination | High salt rejection, extends module life | Support structure limitations | [71] |
Forward osmosis (FO) | Wastewater treatment | Comparable to commercial FO membranes | Requires adequate cleaning/modification | [64] |
Concrete additive | Construction | Improved strength, sustainability | Increased porosity at high loadings | [72] |
Creative non-filtration uses | Various | Reduces landfill, versatile | Limited technical validation | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somrani, A.; Abohelal, K.; Pontié, M. A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes. Membranes 2025, 15, 217. https://doi.org/10.3390/membranes15070217
Somrani A, Abohelal K, Pontié M. A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes. Membranes. 2025; 15(7):217. https://doi.org/10.3390/membranes15070217
Chicago/Turabian StyleSomrani, Anissa, Kholoud Abohelal, and Maxime Pontié. 2025. "A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes" Membranes 15, no. 7: 217. https://doi.org/10.3390/membranes15070217
APA StyleSomrani, A., Abohelal, K., & Pontié, M. (2025). A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes. Membranes, 15(7), 217. https://doi.org/10.3390/membranes15070217