A Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell
Abstract
:1. Introduction
2. Membrane Degradation in PFSA
2.1. Mechanical Degradation
2.2. Thermal Degradation
2.3. Chemical Degradation
3. Chemical Degradation Mechanism by Experiments
3.1. PFSA Main Chain
3.2. PFSA Side Chain
Model compounds | Temperature (°C) | Time (h) | Recovery (%) |
---|---|---|---|
100 | 6 | 100 | |
100 | 24 | 100 | |
100 | 6 | 84 | |
100 | 24 | 80 |
4. Chemical Degradation Mechanism Studied by Theoretical Methods
4.1. Theoretical Approaches for PFSA Membrane
4.2. Bond Dissociation Analysis
Bond | Neutral | Ionized |
---|---|---|
S1–C1 | 257.3 | 349.8 |
C1–C2 | 356.5 | 411.4 |
C2–O1 | 342.7 | 383.4 |
O1–C3 | 337.6 | 299.1 |
C3–C4 | 332.8 | 338.1 |
C3–C5 | 332.4 | 349.6 |
C5–O2 | 306.2 | 328.4 |
O2–C6 | 290.3 | 222.0 |
4.3. Degradation by Chemical Reaction of PFSA Polymer and OH Radical
5. Summary
Acknowledgments
References
- Fuel Cell Commercialization Conference of Japan Home Page. Available online: http://www.fccj.jp (accessed on 28 June 2012).
- Staffell, I.; Green, R.J. Estimating future process for stationary fuel cells with empirically derived experience curves. Int. J. Hydrog. Energy 2009, 34, 5617–5628. [Google Scholar] [CrossRef]
- Vengatesan, S.; Fowler, M.W.; Yuan, X.Z.; Wang, H. Diagnosis of MEA degradation under accelerated relative humidity cycling. J. Power Sources 2011, 196, 5045–5052. [Google Scholar] [CrossRef]
- Lin, R.; Li, B.; Hou, Y.P.; Ma, J.M. Investigation of dynamic driving cycle effect on performance degradation and microstructure change of PEM fuel cell. Int. J. Hydrog. Energy 2009, 34, 2369–2376. [Google Scholar] [CrossRef]
- Shah, A.A.; Ralph, T.R.; Walsh, F.C. Modeling and simulation of the degradation of perfluorinated ion-exchange membranes in PEM fuel cells. J. Electrochem. Soc. 2009, 156, B465–B484. [Google Scholar] [CrossRef]
- Chen, C.; Fuller, T.F. XPS analysis of polymer membrane degradation in PEMFCs. J. Electrochem. Soc. 2009, 156, B1218–B1224. [Google Scholar] [CrossRef]
- Chen, C.; Fuller, T.F. The effect of humidity on the degradation of Nafion membrane. Polym. Degrad. Stab. 2009, 94, 1436–1447. [Google Scholar] [CrossRef]
- Ghassemzadeh, L.; Marrony, M.; Barrera, R.; Kreuer, K.D.; Maier, J.; Müller, K. Chemical degradation of proton conducting perfluorosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy. J. Power Sources 2009, 186, 334–338. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, X.; Wang, H.; Mérida, W.; Zhu, H.; Shen, J.; Wu, S.; Zhang, J. A review of accelerated stress tests of MEA durability in PEM fuel cells. Int. J. Hydrog. Energy 2009, 34, 388–404. [Google Scholar]
- Takizawa, S.; Nakazawa, A.; Inoue, M.; Umeda, M. Anodic Pt dissolution in concentrated trifluoromethanesulfonic acid. J. Power Sources 2010, 195, 5966–5970. [Google Scholar] [CrossRef]
- Yousfi-Steiner, N.; Moçotéguy, Ph.; Candusso, D.; Hissel, D. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences, and diagnostic for mitigation. J. Power Sources 2009, 194, 130–145. [Google Scholar] [CrossRef]
- Chung, C.G.; Kim, L.; Sung, Y.W.; Lee, J.; Chung, J.S. Degradation mechanism of electrocatalyst during long-term operation of PEMFC. Int. J. Hydrog. Energy 2009, 34, 8974–8981. [Google Scholar]
- Kim, L.; Chung, C.G.; Sung, Y.W.; Chung, J.S. Dissolution and migration of platinum after long-term operation of a polymer electrolyte fuel cell under various conditions. J. Power Sources 2008, 183, 524–532. [Google Scholar] [CrossRef]
- Mitsushima, S.; Koizumi, Y.; Uzuka, S.; Ota, K. Dissolution of platinum in acidic media. Electrochim. Acta 2008, 54, 455–460. [Google Scholar] [CrossRef]
- Borup, R.M.; Meyers, J.; Pivovar, B.; Kim, Y.S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.; McGrath, J.E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.; Ogumi, Z.; Miyata, S.; Mishikata, A.; Siroma, Z.; Uchimoto, Y.; Yasuda, K.; Kimijima, K.; Iwashita, N. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 2007, 107, 3904–3951. [Google Scholar]
- Shao-Horn, Y.; Sheng, W.C.; Chen, S.; Ferreira, P.J.; Holby, E.F.; Morgan, D. Instability of supported platinum nanoparticles in low-temperature fuel cells. Top. Catal. 2007, 46, 285–305. [Google Scholar]
- Yasuda, K.; Taniguchi, A.; Akita, T.; Ioroi, T.; Siroma, Z. Characteristics of a platinum black catalyst layer with regard to platinum dissolution phenomena in a membrane electrode assembly. J. Electrochem. Soc. 2006, 153, A1599–A1603. [Google Scholar] [CrossRef]
- Wang, X.; Kumar, R.; Myers, D.J. Effect of voltage on platinum dissolution. Electrochem. Solid-State Lett. 2006, 9, A225–A227. [Google Scholar] [CrossRef]
- Xie, J.; Wood, D.L., III; Wayne, D.M.; Zawodzinski, T.A.; Atanassov, P.; Borup, R.L. Durability of PEFCs at high humidity conditions. J. Electrochem. Soc. 2005, 152, A104–A113. [Google Scholar] [CrossRef]
- Antolini, E. Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J. Mater. Sci. 2003, 38, 2995–3005. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, X.Z.; Martin, J.J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 2008, 184, 104–119. [Google Scholar] [CrossRef]
- Schmittinger, W.; Vahidi, A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J. Power Sources 2008, 180, 1–14. [Google Scholar] [CrossRef]
- De Bruijn, F.A.; Dam, V.A.; Janssen, J.M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cell 2008, 1, 3–22. [Google Scholar]
- Hartnig, C.; Schmidt, T.J. Simulated start-stop as a rapid aging tool for polymer electrolyte fuel cell electrodes. J. Power Sources 2011, 196, 5564–5572. [Google Scholar] [CrossRef]
- Scholta, J.; Pawlik, J.; Chmielewski, N.; Jörissen, L. Longevity test results for reformate polymer electrolyte membrane fuel cell stacks. J. Power Sources 2011, 196, 5264–5271. [Google Scholar] [CrossRef]
- Ishigami, Y.; Takada, K.; Yano, H.; Inukai, J.; Uchida, M.; Nagumo, Y.; Hyakutake, T.; Nishide, H.; Watanabe, M. Corrosion of carbon supports at cathode during hydrogen/air replacement at anode studied by visualization of oxygen partial pressures in a PEFC—Start-up/shut-down simulation. J. Power Sources 2011, 196, 3003–3008. [Google Scholar]
- Pozio, A.; Cemmi, A.; Mura, F.; Masci, A.; Serra, E.; Silva, R.F. Long-term durability study of perfluoropolymer membranes in low humidification conditions. J. Solid State Electrochem. 2011, 15, 1209–1216. [Google Scholar] [CrossRef]
- Nakamura, S.; Kashiwa, E.; Sasou, H.; Hariyama, S.; Aoki, T.; Ogami, Y.; Nishikawa, H. Measurement of leak current generation distribution in PEFC and its application to load fluctuation testing under low humidification. Elec. Eng. Jpn. 2011, 174, 1–9. [Google Scholar]
- Zhang, J.; Song, C.; Zhang, J. Accelerated lifetime testing for proton exchange membrane fuel cells using extremely high temperature and unusually high load. J. Fuel Cell Sci. Technol. 2011, 8, 051006:1–051006:5. [Google Scholar]
- Bajpai, H.; Khandelwal, M.; Kumbur, E.C.; Mench, M.M. A computational model for assessing impact of interfacial morphology on polymer electrolyte fuel cell performance. J. Power Sources 2010, 195, 4196–4205. [Google Scholar]
- Kim, J.H.; Jo, Y.Y.; Cho, E.A.; Jang, J.H.; Kim, H.J.; Lim, T.H.; Oh, I.H.; Ko, J.J.; Son, I.J. Effects of cathode inlet relative humidity on PEMFC durability during startup-shutdown cycling. J. Electrochem. Soc. 2010, 157, B633–B642. [Google Scholar]
- Pinton, E.; Fourneron, Y.; Rosini, S.; Antoni, L. Experimental and theoretical investigations on a proton exchange membrane fuel cell starting up at subzero temperatures. J. Power Sources 2009, 186, 80–88. [Google Scholar] [CrossRef]
- Chen, J.; Zhai, M.; Asano, M.; Huang, L.; Maekawa, Y. Long-term performance of polyetheretherketone-based polymer electrolyte membrane in fuel cells at 95 °C. J. Mater. Sci. 2009, 44, 3674–3681. [Google Scholar] [CrossRef]
- Marrony, M.; Barrera, R.; Quenet, S.; Ginocchio, S.; Montelatici, L.; Aslanides, A. Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions. J. Power Sources 2008, 182, 469–475. [Google Scholar] [CrossRef]
- Oberholzer, P.; Boillat, P.; Siegrist, R.; Perego, R.; Kästner, A.; Lehmann, E.; Scherer, G.G.; Wokaun, A. Cold-start of a PEFC visualized with high resolution dynamics in-plane neutron imaging. J. Electrochem. Soc. 2012, 159, B235–B245. [Google Scholar]
- Hickner, M.A.; Siegel, N.P.; Chen, K.S.; Hussey, D.S.; Jacobson, D.L. Observations of transient flooding in a proton exchange membrane fuel cell using time-resolved neutron radiography. J. Electrochem. Soc. 2010, 157, B32–B38. [Google Scholar] [CrossRef]
- Turhan, A.; Heller, K.; Brenizer, J.S.; Mench, M.M. Passive control of liquid water storage and distribution in a PEFC through flow-field design. J. Power Sources 2008, 180, 773–783. [Google Scholar] [CrossRef]
- Yu, J.; Matsuura, T.; Yoshikawa, Y.; Islam, M.N.; Hori, M. In situ analysis of performance degradation of a PEMFC under nonsaturated humidification. Electrochem. Solid-State Lett. 2005, 8, A156–A158. [Google Scholar] [CrossRef]
- Serincan, M.F.; Pasaogullari, U. Mechanical behavior of the membrane during the polymer electrolyte fuel cell operation. J. Power Sources 2011, 196, 1303–1313. [Google Scholar] [CrossRef]
- He, S.; Mench, M.M. One-dimentional transient model for frost heave in polymer electrolyte fuel cells. J. Electrochem. Soc. 2006, 153, A1724–A1731. [Google Scholar] [CrossRef]
- Park, G.G.; Lim, S.J.; Park, J.S.; Yim, S.D.; Park, S.H.; Yang, T.H.; Yoon, Y.G.; Kim, C.S. Analysis on the freeze/thaw cycled polymer electrolyte fuel cell. Curr. Appl. Phys. 2010, 10, 562–565. [Google Scholar]
- Yang, X.G.; Tabuchi, Y.; Kagami, F.; Wang, C.Y. Durability of membrane electrode assemblies under polymer electrolyte fuel cell cold-start cycling. J. Electrochem. Soc. 2008, 155, B752–B761. [Google Scholar] [CrossRef]
- Kim, S.; Mench, M.M. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Micro-structure effects. J. Power Sources 2007, 174, 206–220. [Google Scholar] [CrossRef]
- Carbone, A.; Saccá, A.; Busacca, C.; Frontera, P.; Antonucci, P.L.; Passalacqua, E. Nafion electro-spun reinforced membranes for polymer electrolyte fuel cell. J. Nanosci. NanoTechnol. 2011, 11, 8768–8774. [Google Scholar]
- Zhang, Z.; Xie, Z.; Zhang, J.; Tang, Y.; Song, C.; Navessin, T.; Shi, Z.; Song, D.; Wang, H.; Wilkinson, D.P.; Liu, Z.S.; Holdcroft, S. High temperature PEM fuel cells. J. Power Sources 2006, 160, 872–891. [Google Scholar] [CrossRef]
- Collier, A.; Wang, H.; Yuan, X.Z.; Zhang, J.; Wilkinson, D.P. Degradation of polymer electrolyte membranes. Int. J. Hydrog. Energy 2006, 31, 1838–1854. [Google Scholar] [CrossRef]
- Savadogo, O. Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J. Power Sources 2004, 127, 135–161. [Google Scholar] [CrossRef]
- Yang, C.; Srinivasan, S.; Bocarsly, A.B.; Tulyani, S.; Benziger, J.B. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J. Membr. Sci. 2004, 237, 145–161. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, L.; Mukerjee, S.; Ofer, D.; Nair, B. An investigation of proton conduction in select PEM’s and reaction layer interfaces-designed for elevated temperature operation. J. Membr. Sci. 2003, 219, 123–136. [Google Scholar] [CrossRef]
- Okanishi, T.; Tsuji, Y.; Sakiyama, Y.; Matsuno, S.; Bae, B.; Miyatake, K.; Uchida, M.; Watanabe, M. Effect of PEFC operating conditions on the durability of sulfonated poly(arylene ether sulfone ketone) multiblock membranes. Electrochim. Acta 2011, 56, 8989–8996. [Google Scholar]
- Okanishi, T.; Tsuji, Y.; Sakiyama, Y.; Matsuno, S.; Bae, B.; Miyatake, K.; Uchida, M.; Watanabe, M. Effect of PEFC operating conditions on the durability of sulfonated polyimide membranes. Electrochim. Acta 2011, 58, 589–598. [Google Scholar] [CrossRef]
- Kabasawa, A.; Saito, J.; Miyatake, K.; Uchida, H.; Watanabe, M. Effects of the decomposition products of sulfonated polyimide and Nafion membranes on the degradation and recovery of electrode performance in PEFCs. Electrochim. Acta 2009, 54, 2754–2760. [Google Scholar]
- Kabasawa, A.; Saito, J.; Yano, H.; Miyatake, K.; Uchida, H.; Watanabe, M. Durability of a novel sulfonated polyimide membrane in polymer electrolyte fuel cell operation. Electrochim. Acta 2009, 54, 1076–1082. [Google Scholar]
- Kerres, J. Blend concepts for fuel cell membranes. Polym. Membr. Fuel Cells 2009, 10, 185–210. [Google Scholar]
- Kang, M.S.; Lee, M.J. Anhydrous solid proton conductors based on perfluorosulfonic ionomer with polymeric solvent for polymer electrolyte fuel cell. Electrochem. Comm. 2009, 11, 457–460. [Google Scholar] [CrossRef]
- Lee, H.S.; Badami, A.S.; Roy, A.; McGrath, J.E. Segmented sulfonated poly(arylene ether sulfone)-b-polyimide copolymers for proton exchange membrane fuel cell. I. Copolymer synthesis and fundamental properties. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 4879–4890. [Google Scholar]
- Yamaki, T.; Tsukada, J.; Asano, M.; Katakai, R.; Yoshida, M. Preparation of highly stable ion exchange membranes by radiation-induced graft copolymerization of stylene and bis(vinyl phenyl)ethane into crosslinked polytetrafluoroethylene films. J. Fuel Cell Sci. Technol. 2007, 4, 56–64. [Google Scholar] [CrossRef]
- Meyer, G.; Gebel, G.; Gonon, L.; Capron, P.; Marscaq, D.; Marestin, C.; Mercier, R. Degradation of sulfonated polyimide membranes in fuel cell conditions. J. Power Sources 2006, 157, 293–301. [Google Scholar] [CrossRef]
- Aoki, M.; Chikashige, Y.; Miyatake, K.; Uchida, H.; Watanabe, M. Durability of novel sulfonated poly(arylene ether) membrane in PEFC operation. Electrochem. Comm. 2006, 8, 1412–1416. [Google Scholar] [CrossRef]
- Gubler, L.; Koppenol, W.H. Kinetic simulation of the chemical stabilization mechanism in fuel cell membranes using cerium and manganese redox couples. J. Electrochem. Soc. 2012, 159, B211–B218. [Google Scholar] [CrossRef]
- Gubler, L.; Dockheer, S.M.; Koppenol, W.H. Radical (HO·, H. and HOO·) formation and ionomer degradation in polymer electrolyte fuel cells. J. Electrochem. Soc. 2011, 158, B755–B769. [Google Scholar]
- Nosaka, Y.; Ohtaka, K.; Ohguri, N.; Nosaka, A.Y. Detection of OH radicals generated in polymer electrolyte fuel cells. J. Electrochem. Soc. 2011, 158, B430–B433. [Google Scholar]
- Ohguri, N.; Nosaka, A.Y.; Nosaka, Y. Detection of OH radicals as the effect of Pt particles in the membrane of polymer electrolyte fuel cells. J. Power Sources 2010, 195, 4647–4652. [Google Scholar] [CrossRef]
- Gummalla, M.; Atrazhev, V.V.; Condit, D.; Cipollini, N.; Madden, T.; Kuzminyh, N.Y.; Weiss, D.; Burlatsky, S.F. Degradation of polymer-electrolyte membranes in fuel cells II. Theoretical model. J. Electrochem. Soc. 2010, 157, B1542–B1548. [Google Scholar]
- Ohguri, N.; Nosaka, A.Y.; Nosaka, Y. Detection of OH radicals formed at PEFC electrodes by means of a fluorescence probe. Electrochem. Solid-State Lett. 2009, 12, B94–B96. [Google Scholar] [CrossRef]
- Franco, A.A.; Guinard, M.; Barthe, B.; Lemaire, O. Impact of carbon monoxide on PEFC catalyst carbon support degradation under current-cycled operating conditions. Electrochim. Acta 2009, 54, 5267–5279. [Google Scholar]
- Inaba, M.; Sugishita, M.; Wada, J.; Matsuzawa, K.; Yamada, H.; Tasaka, A. Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells. J. Power Sources 2008, 178, 699–705. [Google Scholar] [CrossRef]
- Kabasawa, A.; Uchida, H.; Watanabe, M. Influence of decomposition products from perfluorosulfonic acid membrane on fuel cell performance. Electrochem. Solid-State Lett. 2008, 11, B190–B192. [Google Scholar] [CrossRef]
- Hommura, S.; Kawahara, K.; Shimohira, T.; Teraoka, Y. Development of a method for clarifying the perfluorosulfonated membrane degradation mechanism in a fuel cell environment. J. Electrochem. Soc. 2008, 155, A29–A33. [Google Scholar]
- Mittal, V.O.; Kunz, H.R.; Fenton, J.M. Membrane degradation mechanisms in PEMFCs. J. Electrochem. Soc. 2007, 154, B652–B656. [Google Scholar]
- Kinumoto, T.; Inaba, M.; Nakayama, Y.; Ogata, K.; Umebayashi, R.; Tasaka, A.; Iriyama, Y.; Abe, T.; Ogumi, Z. Durability of perfluorinated ionomer membrane against hydrogen peroxide. J. Power Sources 2006, 158, 1222–1228. [Google Scholar] [CrossRef]
- Aoki, M.; Uchida, H.; Watanabe, M. Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells. Electrochem. Comm. 2006, 8, 1509–1513. [Google Scholar]
- Inaba, M.; Kinumoto, T.; Kiriake, M.; Umebayashi, R.; Tasaka, A.; Ogumi, Z. Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim. Acta 2006, 51, 5746–5753. [Google Scholar] [CrossRef]
- Endoh, E. Highly durable MEA for PEMFC under high temperature and low humidity. ECS Trans. 2006, 3, 9–18. [Google Scholar] [CrossRef]
- Aoki, M.; Uchida, M.; Watanabe, M. Novel evaluation method for degradation rate of polymer electrolytes in fuel cells. Electrochem. Comm. 2005, 7, 1434–1438. [Google Scholar] [CrossRef]
- Healy, J.; Hayden, C.; Xie, T.; Olson, K.; Waldo, R.; Brundage, M.; Gasteiger, H.; Abbott, J. Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 2005, 2, 302–308. [Google Scholar]
- Pozio, A.; Silva, R.F.; de Francesco, M.; Giorge, L. Nafion degradation in PEFCs from end plate iron contamination. Electrochim. Acta 2003, 48, 1543–1549. [Google Scholar] [CrossRef]
- Huang, C.; Tan, K.S.; Lin, J.; Tan, K.L. XRD and XPS analysis of the degradation of the polymer electrolyte in H2-O2 fuel cell. Chem. Phys. Lett. 2003, 371, 80–85. [Google Scholar] [CrossRef]
- Delaney, W.E.; Liu, W. Use of FTIR to analyze ex situ and in situ degradation of perfluorinated fuel cell ionomers. ECS Trans. 2007, 11, 1093–1104. [Google Scholar] [CrossRef]
- Endoh, E.; Hommura, S.; Terazono, S.; Wadjaja, H.; Anzai, J. Degradation mechanism of the PFSA membrane and influence of deposited Pt in the membrane. ECS Trans. 2007, 11, 1083–1091. [Google Scholar] [CrossRef]
- Curtin, D.E.; Lousenberg, R.D.; Henry, T.J.; Tangeman, P.C.; Tisack, M.E. Advanced materials for improved PEMFC performance and life. J. Power Sources 2004, 131, 41–48. [Google Scholar] [CrossRef]
- Zhou, C.; Guerra, M.A.; Qiu, Z.M.; Zawodzinski, T.A., Jr.; Schiraldi, D.A. Chemical durability studies of perfluorinated sulfonic acid polymers and model compounds under mimic fuel cell conditions. Macromolecules 2007, 40, 8695–8707. [Google Scholar]
- Schiraldi, D.A. Perfluorinated polymer electrolyte membrane durability. J. Macromol. Sci. Part C Polym. Rev. 2006, 46, 315–327. [Google Scholar] [CrossRef]
- Xie, T.; Hayden, C.A. A kinetic model for the chemical degradation of perfluorinated sulfonic acid ionomers: Weak end group versus side chain cleavage. Polymer 2007, 48, 5497–5506. [Google Scholar] [CrossRef]
- Ghassemzadeh, L.; Kreuer, K.D.; Maier, J.; Müller, K. Evaluating chemical degradation of proton conducting perfluorosulfonic acid ionomers in a Fenton test by solid-state 19F NMR spectroscopy. J. Power Sources 2011, 196, 2490–2497. [Google Scholar] [CrossRef]
- Ghassemzadeh, L.; Kreuer, K.D.; Maier, J.; Müller, K. Chemical degradation of Nafion membranes under mimic fuel cell conditions as investigated by solid-state NMR spectroscopy. J. Phys. Chem. C 2010, 114, 14635–14645. [Google Scholar]
- Ghassemzadeh, L.; Morrony, M.; Barrera, R.; Kreuer, K.D.; Maier, J.; Müller, K. Chemical degradation of proton conducting perfluorosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy. J. Power Sources 2009, 186, 334–338. [Google Scholar] [CrossRef]
- Madden, T.; Weiss, D.; Cipollini, N.; Condit, D.; Gummalla, M.; Burlatsky, S.; Atrazhev, V. Degradation of polymer-electrolyte membranes in fuel cells I. Experimental. J. Electrochem. Soc. 2009, 156, B657–B662. [Google Scholar] [CrossRef]
- Fang, X.; Shen, P.K.; Song, S.; Stetgiopoulos, V.; Tsiakaras, P. Degradation of perfluorinated sulfonic acid films: An in situ infrared spectro-electrochemical study. Polym. Degrad. Stab. 2009, 94, 1707–1713. [Google Scholar] [CrossRef]
- Tang, H.; Peikang, S.; Jiang, S.P.; Wang, F.; Pan, M. A degradation study of Nafion proton exchange membrane of PEM fuel cells. J. Power Sources 2007, 170, 85–92. [Google Scholar] [CrossRef]
- Uchimoto, Y. (Ed.) Fundamental studies to identify the degradation mechanism of single cell of PEFCs. Project Annual Report for FYH20 (ID: 100014110). 2012. Available online: http://www.nedo.go.jp/ (accessed on 28 June 2012).
- Dreizler, A.M.; Roduner, E. Reaction kinetics of hydroxyl radicals with model compounds of fuel cell polymer membranes. Fuel Cells 2012, 12, 132–140. [Google Scholar] [CrossRef]
- Serincan, M.F.; Pasaogullari, U. Effect of gas diffusion layer anisotropy on mechanical stresses in a polymer electrolyte membrane. J. Power Sources 2011, 196, 1314–1320. [Google Scholar] [CrossRef]
- Shah, A.A.; Luo, K.H.; Ralph, T.R.; Walsh, F.C. Recent trends and developments in polymer electrolyte membrane fuel cell modelling. Electrochim. Acta 2011, 56, 3731–3757. [Google Scholar]
- Serincan, M.F.; Pasaogullari, U.; Molter, T. Modeling the cation transport in an operating polymer electrolyte fuel cell (PEFC). Int. J. Hydrog. Energy 2010, 35, 5539–5551. [Google Scholar] [CrossRef]
- Ramousse, J.; Adzakpa, K.P.; Dubé, Y.; Agbossou, K.; Fournier, M.; Poulin, A.; Dostie, M. Local voltage degradations (drying and flooding) analysis through 3D stack thermal modeling. J. Fuel Cell Sci. Technol. 2010, 7, 041006:1–041006:10. [Google Scholar]
- Franco, A.A.; Gerard, M. Multiscale model of carbon corrosion in a PEFC: Coupling with electrocatalysis and impact of performance degradation. J. Electrochem. Soc. 2008, 155, B367–B384. [Google Scholar] [CrossRef]
- Franco, A.A.; Tembely, M. Transient multiscale modeling of aging mechanisms in a PEFC cathode. J. Electrochem. Soc. 2007, 154, B712–B723. [Google Scholar] [CrossRef]
- Eikerling, M.; Kornyshev, A.; Kulikovsky, A. Can theory help to improve fuel cells? Fuel Cell Rev. 2005, 1, 15–25. [Google Scholar]
- Wang, C.Y. Fundamental models for fuel cell engineering. Chem. Rev. 2004, 104, 4727–4766. [Google Scholar] [CrossRef]
- Fowler, M.W.; Mann, R.F.; Amphlett, J.C.; Peppley, B.A.; Roberge, P.R. Incorporation of voltage degradation into a generalized steady state electrochemical model for a PEM fuel cell. J. Power Sources 2002, 106, 274–283. [Google Scholar] [CrossRef]
- Kurniawan, C.; Morita, S.; Kitagawa, K. Hydration structure of trifluoromethanesulfonate studied by quantum chemical calculations. Comput. Theor. Chem. 2012, 982, 30–33. [Google Scholar] [CrossRef]
- Ishimoto, T.; Ogura, T.; Koyama, M. Stability and hydration structure of model perfluorosulfonic acid compound systems, CF3SO3H(H2O)n (n = 1–4), and its isotopomer by the direct treatment of H/D nuclear quantum effects. Comput. Theor. Chem. 2011, 975, 92–98. [Google Scholar]
- Idupulapati, N.; Devanathan, R.; Dupuis, M. Ab initio study of hydration and proton dissociation in ionomer membranes. J. Phys. Chem. A 2010, 114, 6904–6912. [Google Scholar]
- Krishtal, A.; Senet, P.; Alsenoy, C.V. Influence of structure on the polarizability of hydrated methane sulfonic acid clusters. J. Chem. Theory Comput. 2008, 4, 2122–2129. [Google Scholar] [CrossRef]
- Vishnyakov, A.; Neimark, A.V. Specifics of solvation of sulfonated polyelectrolytes in water, dimethylmethylphosphonate, and their mixture: A molecular simulation study. J. Chem. Phys. 2008, 128, 164902:1–164902:11. [Google Scholar]
- Koyama, M.; Bada, K.; Sasaki, K.; Tsuboi, H.; Endou, A.; Kubo, M.; Del Carpio, C.A.; Broclawik, E.; Miyamoto, A. First-principles study on proton dissociation properties of fluorocarbon- and hydrocarbon-based membranes in low humidity conditions. J. Phys. Chem. B 2006, 110, 17872–17877. [Google Scholar]
- Urata, S.; Irisawa, J.; Takada, A.; Tsuzuki, S.; Shinoda, W.; Mikami, M. Intermolecular interaction between the pendant chain of perfluorinated ionomer and water. Phys. Chem. Chem. Phys. 2004, 6, 3325–3332. [Google Scholar]
- Paddison, S.J. The modeling of molecular structure and ion transport in sulfonic acid based ionomer membranes. J. New Mater. Electrochem. Syst. 2001, 4, 197–207. [Google Scholar]
- Phonyiem, M.; Chaiwongwattana, S.; Leo-ngam, C.; Sagarik, K. Proton transfer reactions and dynamics of sulfonic acid group in Nafion. Phys. Chem. Chem. Phys. 2011, 13, 10923–10939. [Google Scholar]
- Li, X.; Li, F.; Shi, Y.; Chen, Q.; Sun, H. Predicting water uptake in poly(perfluorosulfonic acids) using force field simulation methods. Phys. Chem. Chem. Phys. 2010, 12, 14543–14552. [Google Scholar]
- Ahadian, S.; Ranjbar, A.; Mizuseki, H.; Kawazoe, Y. A novel computational approach to study proton transfer in perfluorosulfonic acid membranes. Int. J. Hydrog. Energy 2010, 35, 3648–3655. [Google Scholar]
- Choe, Y.K.; Tsuchida, E.; Ikeshoji, T.; Ohira, A.; Kidena, K. An ab initio modeling study on a modeled hydrated polymer electrolyte membrane, sulfonated polyethersulfone (SPES). J. Phys. Chem. B 2010, 114, 2411–2421. [Google Scholar]
- Choe, Y.K.; Tsuchida, E.; Ikeshoji, T.; Yamakawa, S.; Hyodo, S. Nature of proton dynamics in a polymer electrolyte membrane, Nafion: A first-principles molecular dynamics study. Phys. Chem. Chem. Phys. 2009, 11, 3892–3899. [Google Scholar]
- Choe, Y.K.; Tsuchida, E.; Ikeshoji, T.; Yamakawa, S.; Hyodo, S. Nature of water transport and electro-osmosis in Nafion: Insights from first-principles molecular dynamics simulations under an electric field. J. Phys. Chem. B 2008, 112, 11586–11594. [Google Scholar]
- Wilhelm, M.; Jeske, M.; Marschall, R.; Cavalcanti, W.L.; Tölle, P.; Köhler, C.; Koch, D.; Frauenheim, T.; Grathwohl, G.; Caro, J.; Wark, M. New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO3H-functionalized mesoporous Si-MCM-41 particles. J. Membr. Sci. 2008, 316, 164–175. [Google Scholar]
- Jinnouchi, R.; Okazaki, K. Molecular dynamics study of transport phenomena in perfluorosulfonate ionomer membranes for polymer electrolyte fuel cells. J. Electrochem. Soc. 2003, 150, E66–E73. [Google Scholar] [CrossRef]
- Jinnouchi, R.; Okazaki, K. New insight into microscale transport phenomena in PEFC by quantum MD. Microscale Thermophys. Eng. 2003, 7, 15–31. [Google Scholar] [CrossRef]
- Clark II, J.K.; Paddison, S.J. The effect of side chain connectivity and local hydration on proton transfer in 3 M perfluorosulfonic acid membranes. Solid State Ionics 2012, 213, 83–91. [Google Scholar] [CrossRef]
- Danilczuk, M.; Lin, L.; Schlick, S.; Hamrock, S.J.; Schaberg, M.S. Understanding the fingerprint region in the infra-red spectra of perfluorinated ionomer membranes and corresponding model compounds: Experiments and theoretical calculations. J. Power Sources 2011, 196, 8216–8224. [Google Scholar]
- Li, X.; Liao, S.; Piao, J.; Wang, X. Theoretical study on sulfonated and phosphonated poly[(aryloxy)phosphazene] as proton-conducting membranes for fuel cell applications. Eur. Polym. J. 2009, 45, 2391–2394. [Google Scholar] [CrossRef]
- Devanathan, R. Recent developments in proton exchange membranes for fuel cells. Energy Environ. Sci. 2008, 1, 101–119. [Google Scholar] [CrossRef]
- Narasimachary, S.P.; Roudgar, A.; Eikerling, M.H. Ab initio study of interfacial correlations in polymer electrolyte membranes for fuel cells at low hydration. Electrochim. Acta 2008, 53, 6920–6927. [Google Scholar] [CrossRef]
- Jagur-Grodzinski, J. Polymeric materials for fuel cells: Concise review of recent studies. Polym. Adv. Technol. 2007, 18, 785–799. [Google Scholar] [CrossRef]
- Eikerling, M.H.; Malek, K. Physical modeling of materials for PEFCs: A balancing act of water and complex morphologies. In Proton Exchange Membrane Fuel Cells: Materials Properties and Performance; Willkinson, D.P., Zhang, J., Hui, R., Fergus, J., Li, X., Eds.; CRC Press: Florida, FL, USA, 2009; pp. 343–426. [Google Scholar]
- Kraka, E.; Cremer, D. Characterization of CF bonds with multiple-bond character: Bond length, stretching force constants, and bond dissociation energies. Chem. Phys. Chem. 2009, 10, 686–698. [Google Scholar] [CrossRef]
- Bernardes, C.E.S.; da Piedade, M.E.M.; Amaral, L.M.P.F.; Ferreira, I.M.C.L.; da Silva, A.V.R.; Diogo, H.P.; Cabral, B.J.C. Energies of C–F, C–Cl, C–Br, and C–I bonds in 2-haloethanols, enthalpies of formation of XCH2CH2OH (X = F, Cl, Br, I) compounds and of the 2-hydroxyethyl radical. J. Phys. Chem. A 2007, 111, 1713–1720. [Google Scholar]
- Nam, P.C.; Nguyen, M.T.; Chandra, A.K. The C–H and α(C–X) bond dissociation enthalpies of toluene, C6H5–CH2X (X = F, Cl), and their substituted derivatives: A DFT study. J. Phys. Chem. A 2005, 109, 10342–10347. [Google Scholar]
- Izgorodina, E.I.; Coote, M.L.; Radom, L. Trends in R–X bond dissociation energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): A surprising shortcoming of density functional theory. J. Phys. Chem. A 2005, 109, 7558–7566. [Google Scholar]
- Coote, M.L.; Pross, A.; Radom, L. Variable trends in R–X bond dissociation energies (R = Me, Et, i-Pr, t-Bu. Org. Lett. 2003, 5, 4689–4692. [Google Scholar] [CrossRef]
- Blanksby, S.L.; Ellison, G.B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 2003, 36, 255–263. [Google Scholar] [CrossRef]
- Zavitsas, A.A. The relation between bond lengths and dissociation energies of carbon–carbon bonds. J. Phys. Chem. A 2003, 107, 897–898. [Google Scholar]
- Matsunaga, N.; Rogers, D.W.; Zavitsas, A.A. Pauling’s electronegativity equation and a new corollary accurately predict bond dissociation enthalpies and enhance current understanding of the nature of the chemical bond. J. Org. Chem. 2003, 68, 3158–3172. [Google Scholar]
- Beyer, M. The mechanical strength of a covalent bond calculated by density functional theory. J. Chem. Phys. 2000, 112, 7307–7312. [Google Scholar] [CrossRef]
- Pratt, D.A.; Wright, J.S.; Ingold, K.U. Theoretical study of carbon–halogen bond dissociation enthalpies of substituted benzyl halides. How important are polar effects? J. Am. Chem. Soc. 1999, 121, 4877–4882. [Google Scholar]
- Coms, F.D. The chemistry of fuel cell membrane chemical degradation. ECS Trans. 2008, 16, 235–255. [Google Scholar] [CrossRef]
- Tokumasu, T.; Ogawa, I.; Koyama, M.; Ishimoto, T.; Miyamoto, A. A DFT study of bond dissociation trends of perfluorosulfonic acid membrane. J. Electrochem. Soc. 2011, 158, B175–B179. [Google Scholar] [CrossRef]
- Davi, K.J.; Chandra, A.K. Theoretical investigation of the gas-phase reactions of (CF3)2CHOCH3 with OH radical. Chem. Phys. Lett. 2011, 502, 23–28. [Google Scholar] [CrossRef]
- Jia, X.; Liu, Y.; Sun, J.; Sun, H.; Su, Z.; Pan, X.; Wang, R. Theoretical investigation of the reactions of CF3CHFOCF3 with the OH radical and Cl atom. J. Phys. Chem. A 2010, 114, 417–424. [Google Scholar]
- El-Nahas, A.M.; Uchimaru, T.; Sugie, M.; Tokuhashi, K.; Sekiya, A. Hydrogen abstraction from dimethyl ether (DME) and dimethyl sulfide (DMS) by OH radical: A computational study. J. Mol. Struct. Theochem. 2005, 722, 9–19. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.; Li, Z.; Sun, C. Dual-level direct dynamics studies for the reactions of CH3OCH3 and CF3OCH3 with the OH radical. J. Chem. Phys. 2003, 118, 10986–10995. [Google Scholar] [CrossRef]
- Atadin, F.; Seluki, C.; Sari, L.; Aviyente, V. Theoretical study of hydrogen abstraction from dimethyl ether and methyl tert-butyl ether by hydroxyl radical. Phys. Chem. Chem. Phys. 2002, 4, 1797–1806. [Google Scholar]
- Good, D.A.; Francisco, J.S. Tropospheric oxidation mechanism of dimethyl ether and methyl formate. J. Phys. Chem. A 2000, 104, 1171–1185. [Google Scholar]
- Ishimoto, T.; Nagumo, R.; Ogura, T.; Ishihara, T.; Kim, B.; Miyamoto, A.; Koyama, A. Chemical degradation mechanism of model compound, CF3(CF2)3O(CF2)2OCF2SO3H, of PFSA polymer by attack of hydroxyl radical in PEMFCs. J. Electrochem. Soc. 2010, 157, B1305–B1309. [Google Scholar] [CrossRef]
- Ishimoto, T.; Ogura, T.; Koyama, M. Theoretical study on chemical degradation mechanism of Nafion side chain by the attack of OH radical in polymer electrolyte fuel cell. J. Electrochem. Soc. 2011, 35, 1–6. [Google Scholar]
- Uegaki, R.; Akiyama, Y.; Tojo, S.; Honda, Y.; Nishijima, S. Radical-induced degradation mechanism of perfluorinated polymer electrolyte membrane. J. Power Sources 2011, 196, 9856–9861. [Google Scholar] [CrossRef]
- Yu, T.H.; Sha, Y.; Liu, W.G.; Merinov, B.V.; Shirvanian, P.; Goddard, W.A., III. Mechanism for degradation of Nafion in PEM fuel cell from quantum mechanics calculations. J. Am. Chem. Soc. 2011, 133, 19857–19863. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ishimoto, T.; Koyama, M. A Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell. Membranes 2012, 2, 395-414. https://doi.org/10.3390/membranes2030395
Ishimoto T, Koyama M. A Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell. Membranes. 2012; 2(3):395-414. https://doi.org/10.3390/membranes2030395
Chicago/Turabian StyleIshimoto, Takayoshi, and Michihisa Koyama. 2012. "A Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell" Membranes 2, no. 3: 395-414. https://doi.org/10.3390/membranes2030395
APA StyleIshimoto, T., & Koyama, M. (2012). A Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell. Membranes, 2(3), 395-414. https://doi.org/10.3390/membranes2030395