Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane Materials and Module Fabrication
2.2. Membrane Characterizations
2.2.1. Nanofiltration Measurements
2.2.2. Surface Morphology Measurements
2.2.3. Zeta Potential Measurements
2.2.4. Contact Angle Measurements
2.3. Forward Osmosis Tests
2.4. Baseline Experiments
2.5. Gypsum Scaling Experiments
2.6. Physical Cleaning of Membranes
2.7. Force Measurements at the Atomic Level
3. Results and Discussion
3.1. Membrane Characterizations
3.1.1. Membrane Structure and Morphology
Membrane fibers | OD (μm) | ID (μm) | Wall thickness (μm) | PWP (L/m2 bar h) | 1000 ppm MgCl2 rejection (%) | 1000 ppm NaCl rejection (%) | Contact angle (°) |
---|---|---|---|---|---|---|---|
Annealed CA | 947 ± 14 | 726 ± 13 | 110 ± 7 | 0.89 ± 0.07 | 74.07 ± 3.44 | 56.83 ± 1.00 | 76.54 ± 4.41 |
Annealed PBI/PES | 1100 ± 19 | 730 ± 25 | 185 ± 6 | 0.56 ± 0.09 | 96.33 ± 1.33 | 48.17 ± 0.67 | 63.42 ± 2.30 |
As-spun PBI-POSS/PAN | 1038 ± 5 | 626 ± 4 | 206 ± 1 | 3.23 ± 0.20 | 78.0 ± 2.15 | 27.8 ± 1.96 | 58.50 ± 3.53 |
Annealed PBI-POSS/PAN | 901 ± 14 | 523 ± 16 | 189 ± 11 | 0.85 ± 0.11 | 77.1 ± 0.91 | 46.4 ± 0.71 | 51.42 ± 14.85 |
Membrane | Flux Jf (L/m2 h) | Reverse salt flux Js (g/m2 h) | Js/Jf ratio |
---|---|---|---|
CA | 11.9 ± 0.1 | 2.3 ± 0.3 | 0.19 |
PBI/PES | 13.6 ± 0.2 | 2.7 ± 0.5 | 0.20 |
As-spun PBI-POSS/PAN | 17.6 ± 0.8 | 27.6 ±0 .9 | 1.56 |
Annealed PBI-POSS/PAN | 12.6 ± 0.3 | 8.8 ± 0.6 | 0.69 |
3.1.2. Surface Roughness
3.1.3. Zeta Potential of the PBI Membrane
3.1.4. Contact Angle
3.2. Fouling and Anti-Scaling Behavior
3.2.1. Anti-Scaling Characteristics in Terms of the Reduced Percentage of Flux Reduction
3.2.2. Anti-Fouling Behavior of Positively Charged PBI Membranes
3.2.3. Anti-Scaling Characteristics Determined by Atomic Force Measurements
3.3. Cleaning Efficiency and Reversibility
3.4. Scaling Mechanisms on the Membrane Surface
4. Conclusions
Acknowledgments
Conflicts of Interest
Appendix
A. Schematic Diagram of Membrane Modules
References
- Escobar, I.C.; van der Bruggen, B. Modern Applications in Membrane Science and Technology; American Chemical Society: Washington, DC, USA, 2011. [Google Scholar]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Chung, T.S.; Li, X.; Ong, R.C.; Ge, Q.; Wang, H.; Han, G. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Curr. Opin. Chem. Eng. 2012, 1, 246–257. [Google Scholar] [CrossRef]
- Zhao, S.; Zou, L.; Tang, C.Y.; Mulcahy, D. Recent developments in forward osmosis: Opportunities and challenges. J. Membr. Sci. 2012, 396, 1–21. [Google Scholar] [CrossRef]
- Achilli, A.; Cath, T.Y.; Marchand, E.A.; Childress, A.E. The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination 2009, 239, 10–21. [Google Scholar] [CrossRef]
- Cornelissen, E.R.; Harmsen, D.; de Korte, K.F.; Ruiken, C.J.; Qin, J.J.; Oo, H.; Wessels, L.P. Membrane fouling and process performance of forward osmosis membranes on activated sludge. J. Membr. Sci. 2008, 319, 158–168. [Google Scholar] [CrossRef]
- Mi, B.; Elimelech, M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. J. Membr. Sci. 2010, 348, 337–345. [Google Scholar] [CrossRef]
- Chung, T.S.; Zhang, S.; Wang, K.Y.; Su, J.; Ling, M.M. Forward osmosis processes: Yesterday, today and tomorrow. Desalination 2012, 287, 78–81. [Google Scholar] [CrossRef]
- Alturki, A.; McDonald, J.; Khan, S.J.; Hai, F.I.; Price, W.E.; Nghiem, L.D. Performance of a novel osmotic membrane bioreactor (OMBR) system: Flux stability and removal of trace organics. Bioresour. Technol. 2012, 113, 201–206. [Google Scholar] [CrossRef]
- Parida, V.; Ng, H.Y. Forward osmosis organic fouling: Effects of organic loading, calcium and membrane orientation. Desalination 2013, 312, 88–98. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Yip, N.Y.; Gilron, J.; Elimelech, M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. J. Membr. Sci. 2012, 415–416, 1–8. [Google Scholar] [CrossRef]
- Valladares Linares, R.; Yangali-Quintanilla, V.; Li, Z.; Amy, G. Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Res. 2011, 45, 6737–6744. [Google Scholar] [CrossRef]
- Zhang, J.; Loong, W.L.C.; Chou, S.; Tang, C.; Wang, R.; Fane, A.G. Membrane biofouling and scaling in forward osmosis membrane bioreactor. J. Membr. Sci. 2012, 403–404, 8–14. [Google Scholar] [CrossRef]
- Mi, B.; Elimelech, M. Gypsum scaling and cleaning in forward osmosis: Measurements and mechanisms. Environ. Sci. Technol. 2010, 44, 2022–2028. [Google Scholar]
- Choi, Y.J.; Choi, J.S.; Oh, H.J.; Lee, S.; Yang, D.R.; Kim, J.H. Toward a combined system of forward osmosis and reverse osmosis for seawater desalination. Desalination 2009, 247, 239–246. [Google Scholar] [CrossRef]
- Zhao, S.; Zou, L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination. Desalination 2011, 278, 157–164. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef]
- Busca, G. Bases and basic materials in industrial and environmental chemistry: A review of commercial processes. Ind. Eng. Chem. Res. 2009, 48, 6486–6511. [Google Scholar] [CrossRef]
- Le Gouellec, Y.A.; Elimelech, M. Calcium sulfate (gypsum) scaling in nanofiltration of agricultural drainage water. J. Membr. Sci. 2002, 205, 279–291. [Google Scholar] [CrossRef]
- Yang, H.L.; Huang, C.; Pan, J.R. Characteristics of RO foulants in a brackish water desalination plant. Desalination 2008, 220, 353–358. [Google Scholar] [CrossRef]
- Liu, Y.; Mi, B. Combined fouling of forward osmosis membranes: Synergistic foulant interaction and direct observation of fouling layer formation. J. Membr. Sci. 2012, 407–408, 136–144. [Google Scholar] [CrossRef]
- Liu, Y.; Mi, B. Effects of organic macromolecular conditioning on gypsum scaling of forward osmosis membranes. J. Membr. Sci. 2014, 450, 153–161. [Google Scholar] [CrossRef]
- Chung, T.S. A critical review of polybenzimidazoles: Historical development and future R&D. J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1997, C37, 277–301. [Google Scholar]
- Wang, K.Y.; Xiao, Y.; Chung, T.S. Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin. Chem. Eng. Sci. 2006, 61, 5807–5817. [Google Scholar] [CrossRef]
- Wang, K.Y.; Chung, T.S.; Qin, J.J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process. J. Membr. Sci. 2007, 300, 6–12. [Google Scholar] [CrossRef]
- Wang, K.Y.; Yang, Q.; Chung, T.S.; Rajagopalan, R. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall. Chem. Eng. Sci. 2009, 64, 1577–1584. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, K.Y.; Chung, T.S. Dual-layer hollow fibers with enhanced flux as novel forward osmosis membranes for water production. Environ. Sci. Technol. 2009, 43, 2800–2805. [Google Scholar] [CrossRef]
- Hausman, R.; Digman, B.; Escobar, I.C.; Coleman, M.; Chung, T.S. Functionalization of polybenzimidizole membranes to impart negative charge and hydrophilicity. J. Membr. Sci. 2010, 363, 195–203. [Google Scholar] [CrossRef]
- Su, J.; Yang, Q.; Teo, J.F.; Chung, T.S. Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J. Membr. Sci. 2010, 355, 36–44. [Google Scholar] [CrossRef]
- Fu, F.J.; Zhang, S.; Sun, S.P.; Wang, K.Y.; Chung, T.S. Poss-containing delamination-free dual-layer hollow fiber membranes for forward osmosis and osmotic power generation. J. Membr. Sci. 2013, 443, 144–155. [Google Scholar] [CrossRef]
- Sun, S.P.; Hatton, T.A.; Chan, S.Y.; Chung, T.S. Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water. J. Membr. Sci. 2012, 401–402, 152–162. [Google Scholar] [CrossRef]
- Le, N.L.; Wang, Y.; Chung, T.S. Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation. J. Membr. Sci. 2011, 379, 174–183. [Google Scholar] [CrossRef]
- Ryan, B.J.; Poduska, K.M. Roughness effects on contact angle measurements. Am. J. Phys. 2008, 76, 1074. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chung, T.S.; Gruender, M. Sulfonated polybenzimidazole membranes for pervaporation dehydration of acetic acid. J. Membr. Sci. 2012, 415–416, 486–495. [Google Scholar] [CrossRef]
- Le Gouellec, Y.A.; Elimelech, M. Control of calcium sulfate (gypsum) scale in nanofiltration of saline agricultural drainage water. Environ. Eng. Sci. 2002, 19, 387–397. [Google Scholar] [CrossRef]
- She, Q.; Jin, X.; Li, Q.; Tang, C.Y. Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes. Water Res. 2012, 46, 2478–2486. [Google Scholar] [CrossRef]
- Wang, Y.; Wicaksana, F.; Tang, C.Y.; Fane, A.G. Direct microscopic observation of forward osmosis membrane fouling. Environ. Sci. Technol. 2010, 44, 7102–7109. [Google Scholar] [CrossRef]
- Zou, S.; Gu, Y.; Xiao, D.; Tang, C.Y. The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation. J. Membr. Sci. 2011, 366, 356–362. [Google Scholar] [CrossRef]
- Lee, N.; Amy, G.; Croué, J.-P; Buisson, H. Morphological analyses of natural organic matter (NOM) fouling of low-pressure membranes (MF/UF). J. Membr. Sci. 2005, 261, 7–16. [Google Scholar] [CrossRef]
- Riedl, K.; Girard, B.; Lencki, R.W. Influence of membrane structure on fouling layer morphology during apple juice clarification. J. Membr. Sci. 1998, 139, 155–166. [Google Scholar] [CrossRef]
- Hulett, G.A.; Allen, L.E. The solubility of gypsum. J. Am. Chem. Soc. 1902, 24, 667–679. [Google Scholar] [CrossRef]
- Tanji, K.K. Solubility of gypsum in aqueous electrolytes as affected by ion association and ionic strengths up to 0.15 m and at 25 °C. Environ. Sci. Technol. 1969, 3, 656–661. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, S.C.; Su, J.; Fu, F.-J.; Mi, B.; Chung, T.-S. Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis. Membranes 2013, 3, 354-374. https://doi.org/10.3390/membranes3040354
Chen SC, Su J, Fu F-J, Mi B, Chung T-S. Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis. Membranes. 2013; 3(4):354-374. https://doi.org/10.3390/membranes3040354
Chicago/Turabian StyleChen, Si Cong, Jincai Su, Feng-Jiang Fu, Baoxia Mi, and Tai-Shung Chung. 2013. "Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis" Membranes 3, no. 4: 354-374. https://doi.org/10.3390/membranes3040354
APA StyleChen, S. C., Su, J., Fu, F. -J., Mi, B., & Chung, T. -S. (2013). Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis. Membranes, 3(4), 354-374. https://doi.org/10.3390/membranes3040354