Detailed Investigation of Separation Performance of a MMM for Removal of Higher Hydrocarbons under Varying Operating Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. SEM Analysis
2.2. Single Gas Permeation
2.3. Binary Gas Mixture Permeation and Separation
2.3.1. Influence of Feed Pressure
2.3.2. Influence of Permeate Pressure
2.3.3. Influence of Temperature
2.3.4. Influence of Binary Feed Composition
2.4. Multi-Component Gas Mixture Permeation and Separation
3. Experimental Section
3.1. Materials
3.2. Membrane Preparation
3.3. SEM Analysis
3.4. Pure Gas Permeation Measurements
3.5. Mixed Gas Permeation Measurements
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Baker, R.W. Membrane Technology and Applications, 2nd ed.; John Wiley: Chichester, UK; New York, NY, USA, 2004. [Google Scholar]
- Henley, E.J.; Seader, J.D.; Roper, D.K. Separation Process Principles, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Thompson, S.M.; Robertson, G.; Johnson, E. Liquefied Petroleum Gas. In Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000. [Google Scholar]
- Baker, R.W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Melin, T. Membranverfahren: Grundlagen der Modul-und Anlagenauslegung, 3rd ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Baker, R.W. Future Directions of Membrane Gas Separation Technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Ohlrogge, K.; Ebert, K. (Eds.) Membranen: Grundlagen, Verfahren Und Industrielle Anwendungen; Wiley-VCH: Weinheim, Germany, 2005.
- Rao, M.; Sircar, S. Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J. Membr. Sci. 1993, 85, 253–264. [Google Scholar] [CrossRef]
- Kulprathipanja, S. Zeolites in Industrial Separation and Catalysis; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Moore, T.T.; Koros, W.J. Non-ideal effects in organic-inorganic materials for gas separation membranes. J. Mol. Struct. 2005, 739, 87–98. [Google Scholar] [CrossRef]
- Cong, H.; Radosz, M.; Towler, B.; Shen, Y. Polymer-inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 2007, 55, 281–291. [Google Scholar] [CrossRef]
- Chung, T.; Jiang, L.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507. [Google Scholar] [CrossRef]
- Dong, G.; Li, H.; Chen, V. Challenges and opportunities for mixed-matrix membranes for gas separation. J. Mater. Chem. A 2013, 1, 4610–4630. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F.; Sanip, S.M.; Ng, B.C.; Aziz, M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011, 81, 243–264. [Google Scholar] [CrossRef]
- Jia, M.; Peinemann, K.-V.; Behling, R.-D. Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation. J. Membr. Sci. 1991, 57, 289–296. [Google Scholar] [CrossRef]
- Khanbabaei, G.; Vasheghani-Farahani, E.; Rahmatpour, A. Pure and mixed CH4 and n-C4H10 permation in PDMS-fumed silica nanocomposite membranes. Chem. Eng. J. 2012, 191, 369–377. [Google Scholar] [CrossRef]
- Nunes, S.; Schultz, J.; Peinemann, K.-V. Silicone membranes with silica nanoparticles. J. Mater. Sci. Lett. 1996, 15, 1139–1141. [Google Scholar] [CrossRef]
- Merkel, T.C.; He, Z.; Pinnau, I.; Freeman, B.D.; Meakin, P.; Hill, A.J. Effect of Nanoparticles on Gas Sorption and Transport in Poly(1-trimethylsilyl-1-propyne). Macromolecules 2003, 36, 6844–6855. [Google Scholar] [CrossRef]
- He, Z.; Pinnau, I.; Morisato, A. Nanostructured poly(4-methyl-2-pentyne)/silica hybrid membranes for gas separation. Desalination 2002, 146, 11–15. [Google Scholar] [CrossRef]
- Mushardt, H.; Kramer, V.; Hülagü, D.; Brinkmann, T.; Kraume, M. Development of Solubility Selective Mixed Matrix Membranes for Gas Separation. Chem. Ing. Tech. 2014, 86, 83–91. [Google Scholar] [CrossRef]
- Löffler, V.; Kraume, M. Development of Mixed-Matrix Membranes for separation of gaseous hydrocarbons. In Proceedings of the 18th International Conference Process Engineering and Chemical Plant Design, Berlin, Germany, 19–23 September 2011; Wozny, G., Ed.; Univ.-Verl. der TU: Berlin, Germany, 2011; pp. 207–216. [Google Scholar]
- Ohlrogge, K.; Wind, J.; Brinkmann, T. Membranes for recovery of volatile organic compounds. In Comprehensive Membrane Science and Engineering, 1st ed.; Drioli, E., Giorno, L., Eds.; Elsevier Science: Amsterdam, The Netherlands; London, UK, 2010; pp. 213–240. [Google Scholar]
- Raharjo, R.D.; Freeman, B.D.; Paul, D.R.; Sarti, G.C.; Sanders, E.S. Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly(dimethylsiloxane). J. Membr. Sci. 2007, 306, 75–92. [Google Scholar] [CrossRef]
- Müller, M. Permeationsverhalten von Mixed-Matrix-Membranen zur Abtrennung von Gasförmigen, Höheren Kohlenwasserstoffen; Masterarbeit: Hamburg, Germany, 2015. [Google Scholar]
- Raharjo, R.; Freeman, B.D.; Sanders, E. Pure and mixed gas CH4 and n-C4H10 sorption and dilation in poly(dimethylsiloxane). J. Membr. Sci. 2007, 292, 45–61. [Google Scholar] [CrossRef]
- Reid, R.C.; Prausnitz, J.M.; Sherwood, T.K. The Properties of Gases and Liquids, 3rd ed.; McGraw-Hill: New York, NY, USA, 1977. [Google Scholar]
- Car, A.; Stropnik, C.; Yave, W.; Peinemann, K.-V. Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases. Sep. Purif. Technol. 2008, 62, 110–117. [Google Scholar] [CrossRef]
- Brinkmann, T.; Pohlmann, J.; Withalm, U.; Wind, J.; Wolff, T. Theoretical and Experimental Investigations of Flat Sheet Membrane Module Types for High Capacity Gas Separation Applications. Chem. Ing. Tech. 2013, 85, 1210–1220. [Google Scholar] [CrossRef]
Component | CH4 | CO2 | C2H6 | C3H8 | n-C4H10 | n-C5H12 |
---|---|---|---|---|---|---|
Tb (°C) | −161.5 | −78.5 | −88.7 | −42.1 | −0.5 | 36.0 |
L (mN3/(m2·h·bar)) | 0.41 | 1.20 | 1.64 | 4.14 | 12.95 | 60.97 |
Selectivity vs. CH4 | - | 2.92 | 3.98 | 10.06 | 31.46 | 148.12 |
Properties | Value |
---|---|
d50 µm | 1.5 |
SBET m2/g | 1361 |
dpore Å | 18.7 |
vpore cm3/g | 0.636 |
Porosity % | 57.6 |
Density cm3/g | 0.891 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushardt, H.; Müller, M.; Shishatskiy, S.; Wind, J.; Brinkmann, T. Detailed Investigation of Separation Performance of a MMM for Removal of Higher Hydrocarbons under Varying Operating Conditions. Membranes 2016, 6, 16. https://doi.org/10.3390/membranes6010016
Mushardt H, Müller M, Shishatskiy S, Wind J, Brinkmann T. Detailed Investigation of Separation Performance of a MMM for Removal of Higher Hydrocarbons under Varying Operating Conditions. Membranes. 2016; 6(1):16. https://doi.org/10.3390/membranes6010016
Chicago/Turabian StyleMushardt, Heike, Marcus Müller, Sergey Shishatskiy, Jan Wind, and Torsten Brinkmann. 2016. "Detailed Investigation of Separation Performance of a MMM for Removal of Higher Hydrocarbons under Varying Operating Conditions" Membranes 6, no. 1: 16. https://doi.org/10.3390/membranes6010016
APA StyleMushardt, H., Müller, M., Shishatskiy, S., Wind, J., & Brinkmann, T. (2016). Detailed Investigation of Separation Performance of a MMM for Removal of Higher Hydrocarbons under Varying Operating Conditions. Membranes, 6(1), 16. https://doi.org/10.3390/membranes6010016