Examining the Ability of CMIP6 Models to Reproduce the Upwelling SST Imprint in the Eastern Boundary Upwelling Systems
Abstract
:1. Introduction
2. Methods
2.1. SST Data
2.2. Analysis of Coastal and Oceanic SST
2.3. Validation
3. Results and Discussion
4. Conclusions
- Benguela: No model adequately reproduces the SST imprint under the conditions established in the present study.
- Canary: CNRM-HR (historical and hist-1950) (3 and 13), GFDL-CM4 (4), HadGEM-MM (6), CMCC-VHR4 (12), and EC-Earth3P (14).
- Humboldt: CESM1-HR (10), CMCC-VHR4 (12), ECMWF-HR (16), and HadGEM-HM (20).
- California: HadGEM-HH and HadGEM-HM (19 and 20).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brewin, R.J.; Smale, D.A.; Moore, P.J.; Dall’Olmo, G.; Miller, P.I.; Taylor, B.H.; Smyth, T.J.; Fishwick, J.R.; Yang, M. Evaluating operational AVHRR sea surface temperature data at the coastline using benthic temperature loggers. Remote Sens. 2018, 10, 925. [Google Scholar] [CrossRef] [Green Version]
- Thakur, K.K.; Vanderstichel, R.; Barrell, J.; Stryhn, H.; Patanasatienkul, T.; Revie, C.W. Comparison of remotely-sensed sea surface temperature and salinity products with in situ measurements from British Columbia, Canada. Front. Mar. Sci. 2018, 5, 121. [Google Scholar] [CrossRef] [Green Version]
- Demarcq, H. Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr. 2009, 83, 376–385. [Google Scholar] [CrossRef]
- Lima, F.P.; Wethey, D.S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat. Commun. 2012, 3, 704. [Google Scholar] [CrossRef] [Green Version]
- Benazzouz, A.; Mordane, S.; Orbi, A.; Chagdali, M.; Hilmi, K.; Atillah, A.; Pelegrí, J.L.; Hervé, D. An improved coastal upwelling index from sea surface temperature using satellite-based approach—The case of the Canary Current upwelling system. Cont. Shelf Res. 2014, 81, 38–54. [Google Scholar] [CrossRef]
- Tim, N.; Zorita, E.; Hünicke, B. Decadal variability and trends of the Benguela upwelling system as simulated in a high-resolution ocean simulation. Ocean Sci. 2015, 11, 483–502. [Google Scholar] [CrossRef] [Green Version]
- Varela, R.; Lima, F.P.; Seabra, R.; Meneghesso, C.; Gómez-Gesteira, M. Coastal warming and wind-driven upwelling: A global analysis. Sci. Total. Environ. 2018, 639, 1501–1511. [Google Scholar] [CrossRef]
- Seabra, R.; Varela, R.; Santos, A.M.; Gómez-Gesteira, M.; Meneghesso, C.; Wethey, D.S.; Lima, F.P. Reduced Nearshore Warming Associated With Eastern Boundary Upwelling Systems. Front. Mar. Sci. 2019, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Meneghesso, C.; Seabra, R.; Broitman, B.R.; Wethey, D.S.; Burrows, M.T.; Chan, B.K.; Guy-Haim, T.; Ribeiro, P.A.; Rilov, G.; Santos, A.M.; et al. Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote. Sens. Environ. 2020, 237, 111588. [Google Scholar] [CrossRef]
- Dufois, F.; Penven, P.; Whittle, C.P.; Veitch, J. On the warm nearshore bias in Pathfinder monthly SST products over Eastern Boundary Upwelling Systems. Ocean Model. 2012, 47, 113–118. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Darmaraki, S.; Somot, S.; Sevault, F.; Nabat, P.; Narvaez, W.D.C.; Cavicchia, L.; Djurdjevic, V.; Li, L.; Sannino, G.; Sein, D.V. Future evolution of Marine Heatwaves in the Mediterranean Sea. Clim. Dyn. 2019, 53, 1371–1392. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.A.; Scott, J.D.; Friedland, K.D.; Mills, K.E.; Nye, J.A.; Pershing, A.J.; Thomas, A.C. Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elementa Sci. Anthr. 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.C.; Alvarez, I.; Decastro, M.; Gomez-Gesteira, M.; Dias, J.M. Seasonality of coastal upwelling trends under future warming scenarios along the southern limit of the canary upwelling system. Prog. Oceanogr. 2017, 153, 16–23. [Google Scholar] [CrossRef]
- Varela, R.; Rodríguez-Díaz, L.; de Castro, M.; Gómez-Gesteira, M. Influence of Canary upwelling system on coastal SST warming along the 21st century using CMIP6 GCMs. Glob. Planet. Chang. 2021, 208, 103692. [Google Scholar] [CrossRef]
- Oyarzún, D.; Brierley, C.M. The future of coastal upwelling in the Humboldt current from model projections. Clim. Dyn. 2018, 52, 599–615. [Google Scholar] [CrossRef] [Green Version]
- Sylla, A.; Mignot, J.; Capet, X.; Gaye, A.T. Weakening of the Senegalo–Mauritanian upwelling system under climate change. Clim. Dyn. 2019, 53, 4447–4473. [Google Scholar] [CrossRef]
- Sousa, M.C.; Ribeiro, A.; Des, M.; Gomez-Gesteira, M.; Decastro, M.; Dias, J.M. NW Iberian Peninsula coastal upwelling future weakening: Competition between wind intensification and surface heating. Sci. Total. Environ. 2019, 703, 134808. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Artal, O.; Sepúlveda, H.H.; Mery, D.; Pieringer, C. Detecting and characterizing upwelling filaments in a numerical ocean model. Comput. Geosci. 2018, 122, 25–34. [Google Scholar] [CrossRef]
- Santana-Falcón, Y.; Mason, E.; Arístegui, J. Offshore transport of organic carbon by upwelling filaments in the Canary Current System. Prog. Oceanogr. 2020, 186, 102322. [Google Scholar] [CrossRef]
- Hauschildt, J.; Thomsen, S.; Echevin, V.; Oschlies, A.; José, Y.S.; Krahmann, G.; Bristow, L.A.; Lavik, G. The fate of upwelled nitrate off Peru shaped by submesoscale filaments and fronts. Biogeosciences 2021, 18, 3605–3629. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Lee, S.-K.; Wu, L.; Mechoso, C.R. A global perspective on CMIP5 climate model biases. Nat. Clim. Chang. 2014, 4, 201–205. [Google Scholar] [CrossRef]
- Richter, I. Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. WIREs Clim. Chang. 2015, 6, 345–358. [Google Scholar] [CrossRef]
- Ma, J.; Xu, S.; Wang, B. Warm bias of sea surface temperature in Eastern boundary current regions—A study of effects of horizontal resolution in CESM. Ocean Dyn. 2019, 69, 939–954. [Google Scholar] [CrossRef]
- Gent, P.R.; Yeager, S.G.; Neale, R.B.; Levis, S.; Bailey, D.A. Improvements in a half degree atmosphere/land version of the CCSM. Clim. Dyn. 2009, 34, 819–833. [Google Scholar] [CrossRef]
- Small, R.J.; Curchitser, E.; Hedstrom, K.; Kauffman, B.; Large, W.G. The Benguela Upwelling System: Quantifying the Sensitivity to Resolution and Coastal Wind Representation in a Global Climate Model*. J. Clim. 2015, 28, 9409–9432. [Google Scholar] [CrossRef]
- Des, M.; Martínez, B.; Decastro, M.; Viejo, R.; Sousa, M.; Gómez-Gesteira, M. The impact of climate change on the geographical distribution of habitat-forming macroalgae in the Rías Baixas. Mar. Environ. Res. 2020, 161, 105074. [Google Scholar] [CrossRef]
- Castro-Olivares, A.; Des, M.; Olabarria, C.; de Castro, M.; Vázquez, E.; Sousa, M.C.; Gómez-Gesteira, M. Does global warming threaten small-scale bivalve fisheries in NW Spain? Mar. Environ. Res. 2022, 180, 105707. [Google Scholar] [CrossRef]
- Des, M.; Gómez-Gesteira, J.; Decastro, M.; Iglesias, D.; Sousa, M.; ElSerafy, G.; Gómez-Gesteira, M. Historical and future naturalization of Magallana gigas in the Galician coast in a context of climate change. Sci. Total Environ. 2022, 838, 156437. [Google Scholar] [CrossRef]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V.; et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef] [Green Version]
- Richter, I.; Tokinaga, H. An overview of the performance of CMIP6 models in the tropical Atlantic: Mean state, variability, and remote impacts. Clim. Dyn. 2020, 55, 2579–2601. [Google Scholar] [CrossRef]
- Li, J.F.; Xu, K.; Jiang, J.H.; Lee, W.; Wang, L.; Yu, J.; Stephens, G.; Fetzer, E.; Wang, Y. An Overview of CMIP5 and CMIP6 Simulated Cloud Ice, Radiation Fields, Surface Wind Stress, Sea Surface Temperatures, and Precipitation Over Tropical and Subtropical Oceans. J. Geophys. Res. Atmos. 2020, 125, e2020JD032848. [Google Scholar] [CrossRef]
- Halder, S.; Parekh, A.; Chowdary, J.S.; Gnanaseelan, C.; Kulkarni, A. Assessment of CMIP6 models’ skill for tropical Indian Ocean sea surface temperature variability. Int. J. Clim. 2020, 41, 2568–2588. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Kodama, C.; Ohno, T.; Seiki, T.; Yashiro, H.; Noda, A.T.; Nakano, M.; Sugi, M. The non-hydrostatic global atmospheric model for CMIP6 HighResMIP simulations (NICAM16-S): Experimental design, model description, and sensitivity experiments. Geosci. Model Dev. Discuss. 2020, 2020, 1–50. [Google Scholar]
- Costoya, X.; Rocha, A.; Carvalho, D. Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula. Appl. Energy 2020, 262, 114562. [Google Scholar] [CrossRef]
- Arguilé-Pérez, B.; Ribeiro, A.S.; Costoya, X.; Decastro, M.; Carracedo, P.; Dias, J.M.; Rusu, L.; Gómez-Gesteira, M. Harnessing of Different WECs to Harvest Wave Energy along the Galician Coast (NW Spain). J. Mar. Sci. Eng. 2022, 10, 719. [Google Scholar] [CrossRef]
- Santos, F.; Gómez-Gesteira, M.; deCastro, M.; Álvarez, I. Differences in coastal and oceanic SST trends due to the strengthening of coastal upwelling along the Benguela current system. Cont. Shelf Res. 2012, 34, 79–86. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, X.-H.; Jo, Y.-H.; Jiang, L.; Jiang, Y. A study of Benguela upwelling system using different upwelling indices derived from remotely sensed data. Cont. Shelf Res. 2012, 45, 27–33. [Google Scholar] [CrossRef]
- Santos, F.; Decastro, M.; Gómez-Gesteira, M.; Álvarez, I. Differences in coastal and oceanic SST warming rates along the Canary upwelling ecosystem from 1982 to 2010. Cont. Shelf Res. 2012, 47, 1–6. [Google Scholar] [CrossRef]
- Barton, E.D.; Field, D.B.; Roy, C. Canary current upwelling: More or less? Prog. Oceanogr. 2013, 116, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Cropper, T.E.; Hanna, E.; Bigg, G.R. Spatial and temporal seasonal trends in coastal upwelling off Northwest Africa, 1981–2012. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2014, 86, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Castelao, R.M.; Yuan, Y. Seasonal variability of alongshore winds and sea surface temperature fronts in Eastern Boundary Current Systems. J. Geophys. Res. Oceans 2015, 120, 2385–2400. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, D.; Bouloubassi, I.; Sifeddine, A.; Purca, S.; Goubanova, K.; Graco, M.; Field, D.; Méjanelle, L.; Velazco, F.; Lorre, A.; et al. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Pardo, P.C.; Padín, X.; Gil Coto, M.; Fariña-Busto, L.; Perez, F.F. Evolution of upwelling systems coupled to the long-term variability in sea surface temperature and Ekman transport. Clim. Res. 2011, 48, 231–246. [Google Scholar] [CrossRef] [Green Version]
- Echevin, V.; Goubanova, K.; Belmadani, A.; Dewitte, B. Sensitivity of the Humboldt Current system to global warming: A downscaling experiment of the IPSL-CM4 model. Clim. Dyn. 2011, 38, 761–774. [Google Scholar] [CrossRef]
- Gutiérrez, D.; Akester, M.; Naranjo, L. Productivity and Sustainable Management of the Humboldt Current Large Marine Ecosystem under climate change. Environ. Dev. 2016, 17, 126–144. [Google Scholar] [CrossRef]
- Hernandez, O.; Jouanno, J.; Echevin, V.; Aumont, O. Modification of sea surface temperature by chlorophyll concentration in the Atlantic upwelling systems. J. Geophys. Res. Ocean. 2017, 122, 5367–5389. [Google Scholar] [CrossRef]
- Iitembu, J.A.; Dalu, T. Patterns of trophic resource use among deep-sea shrimps in the Northern Benguela current ecosystem, Namibia. Food Webs 2018, 16, e00089. [Google Scholar] [CrossRef]
- Siemer, J.P.; Machín, F.; González-Vega, A.; Arrieta, J.M.; Gutiérrez-Guerra, M.A.; Pérez-Hernández, M.D.; Vélez-Belchí, P.; Hernández-Guerra, A.; Fraile-Nuez, E. Recent Trends in SST, Chl-a, Productivity and Wind Stress in Upwelling and Open Ocean Areas in the Upper Eastern North Atlantic Subtropical Gyre. J. Geophys. Res. Oceans 2021, 126, e2021JC017268. [Google Scholar] [CrossRef]
- García-Reyes, M.; Largier, J.L. Seasonality of coastal upwelling off central and northern California: New insights, including temporal and spatial variability. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- Sylla, A.; Gomez, E.S.; Mignot, J.; López-Parages, J. Impact of increased resolution on the representation of the Canary upwelling system in climate models. Geosci. Model Dev. 2022, 15, 8245–8267. [Google Scholar] [CrossRef]
- Farneti, R.; Stiz, A.; Ssebandeke, J.B. Improvements and persistent biases in the southeast tropical Atlantic in CMIP models. NPJ Clim. Atmos. Sci. 2022, 5, 42. [Google Scholar] [CrossRef]
- Balaguru, K.; Van Roekel, L.P.; Leung, L.R.; Veneziani, M. Subtropical Eastern North Pacific SST Bias in Earth System Models. J. Geophys. Res. Oceans 2021, 126, e2021JC017359. [Google Scholar] [CrossRef]
- Liu, H.; Song, Z.; Wang, X.; Misra, V. An ocean perspective on CMIP6 climate model evaluations. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2022, 201, 105120. [Google Scholar] [CrossRef]
- Wang, Y.; Heywood, K.J.; Stevens, D.P.; Damerell, G.M. Seasonal extrema of sea surface temperature in CMIP6 models. Ocean Sci. 2022, 18, 839–855. [Google Scholar] [CrossRef]
- Richter, I.; Xie, S.-P. On the origin of equatorial Atlantic biases in coupled general circulation models. Clim. Dyn. 2008, 31, 587–598. [Google Scholar] [CrossRef]
- Xu, Z.; Li, M.; Patricola, C.; Chang, P. Oceanic origin of southeast tropical Atlantic biases. Clim. Dyn. 2013, 43, 2915–2930. [Google Scholar] [CrossRef]
- Patricola, C.M.; Chang, P. Structure and dynamics of the Benguela low-level coastal jet. Clim. Dyn. 2016, 49, 2765–2788. [Google Scholar] [CrossRef]
- Kurian, J.; Li, P.; Chang, P.; Patricola, C.M.; Small, J. Impact of the Benguela coastal low-level jet on the southeast tropical Atlantic SST bias in a regional ocean model. Clim. Dyn. 2021, 56, 2773–2800. [Google Scholar] [CrossRef]
- Oettli, P.; Yuan, C.; Richter, I. The Other Coastal Niño/Niña—The Benguela, California and Dakar Niños/Niñas. In Tropical and Extra-Tropical Air-Sea Interactions; Behera, S.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128181560. [Google Scholar]
- Song, Z.; Liu, H.; Chen, X. Eastern equatorial Pacific SST seasonal cycle in global climate models: From CMIP5 to CMIP6. Acta Oceanol. Sin. 2020, 39, 50–60. [Google Scholar] [CrossRef]
- Burrows, M.T.; Schoeman, D.S.; Richardson, A.J.; Molinos, J.G.; Hoffmann, A.; Buckley, L.B.; Moore, P.J.; Brown, C.J.; Bruno, J.F.; Duarte, C.M.; et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 2014, 507, 492–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourenço, C.R.; Zardi, G.I.; McQuaid, C.D.; Serrão, E.A.; Pearson, G.A.; Jacinto, R.; Nicastro, K.R. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 2016, 43, 1595–1607. [Google Scholar] [CrossRef]
- Renault, L.; Deutsch, C.; McWilliams, L.R.J.C.; Frenzel, C.D.H.; Liang, J.-H.; Colas, F. Partial decoupling of primary productivity from upwelling in the California Current system. Nat. Geosci. 2016, 9, 505–508. [Google Scholar] [CrossRef]
Model Number | Name | Experiment ID | Oceanic Resolution (°) | Atmospheric Resolution (°) | Variant Label |
---|---|---|---|---|---|
1 | AWI-CM-1-1-MR | Historical | 0.25 | 1 | r1i1p1f1 |
2 | CMCC-CM2-HR4 | Historical | 0.25 | 1 | r1i1p1f1 |
3 | CNRM-CM6-1-HR | Historical | 0.25 | 1 | r1i1p1f2 |
4 | GFDL-CM4 | Historical | 0.25 | 1 | r1i1p1f1 |
5 | GFDL-ESM4 | Historical | 0.5 | 1 | r1i1p1f1 |
6 | HadGEM3-GC31-MM | Historical | 0.25 | 1 | r1i1p1f3 |
7 | ICON-ESM-LR | Historical | 0.5 | 2.5 | r1i1p1f1 |
8 | MPI-ESM1-2-HR | Historical | 0.5 | 1 | r1i1p1f1 |
9 | BCC-CSM2-HR | Hist-1950 | 0.5 | 0.5 | r1i1p1f1 |
10 | CESM1-CAM5-SE-HR | Hist-1950 | 0.1 | 0.25 | r1i1p1f1 |
11 | CMCC-CM2-HR4 | Hist-1950 | 0.25 | 1 | r1i1p1f1 |
12 | CMCC-CM2-VHR4 | Hist-1950 | 0.25 | 0.25 | r1i1p1f1 |
13 | CNRM-CM6-1-HR | Hist-1950 | 0.25 | 1 | r1i1p1f2 |
14 | EC-Earth3P | Hist-1950 | 1 | 0.8 | r3i1p2f1 |
15 | EC-Earth3P-HR | Hist-1950 | 0.25 | 0.5 | r1i1p2f1 |
16 | ECMWF-IFS-HR | Hist-1950 | 0.25 | 0.25 | r1i1p1f1 |
17 | ECMWF-IFS-MR | Hist-1950 | 0.25 | 0.5 | r1i1p1f1 |
18 | FGOALS-f3-H | Hist-1950 | 0.1 | 0.25 | r1i1p1f1 |
19 | HadGEM3-GC31-HH | Hist-1950 | 0.1 | 0.5 | r1i1p1f1 |
20 | HadGEM3-GC31-HM | Hist-1950 | 0.25 | 0.5 | r1i1p1f1 |
21 | MPI-ESM1-2-HR | Hist-1950 | 0.5 | 1 | r1i1p1f1 |
22 | MPI-ESM1-2-XR | Hist-1950 | 0.5 | 0.5 | r1i1p1f1 |
23 | NICAM16-8S | HighresSST-present | None | 0.5 | r1i1p1f1 |
Benguela | Canary | Humboldt | California | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NRMSE (%) | NBias (%) | NRMSE (%) | NBias (%) | NRMSE (%) | NBias (%) | NRMSE (%) | NBias (%) | |||||||||
Model | Coast | Ocean | Coast | Ocean | Coast | Ocean | Coast | Ocean | Coast | Ocean | Coast | Ocean | Coast | Ocean | Coast | Ocean |
1 | 23.93 | 7.15 | 22.28 | 2.28 | 7.01 | 3.46 | −4.67 | −2.04 | 6.49 | 7.81 | 1.38 | −6.74 | 19.03 | 9.07 | 16.04 | −8.91 |
2 | 32.43 | 11.70 | 29.21 | 10.52 | 5.75 | 5.53 | −0.92 | −1.77 | 18.79 | 8.40 | 17.95 | 7.76 | 22.35 | 9.81 | 22.12 | 9.74 |
3 | 29.05 | 7.98 | 27.02 | 5.43 | 4.97 | 3.10 | −3.86 | −2.89 | 10.32 | 6.78 | 9.59 | 5.77 | 25.16 | 13.02 | 25.08 | 12.99 |
4 | 23.17 | 6.01 | 21.43 | −0.45 | 3.96 | 1.93 | 0.69 | 0.33 | 9.03 | 3.94 | 7.57 | 2.36 | 14.69 | 3.35 | 14.09 | 3.02 |
5 | 29.48 | 8.89 | 28.36 | 7.35 | 8.45 | 3.29 | 5.60 | 2.34 | 10.34 | 7.21 | 9.37 | 6.29 | 13.06 | 5.73 | 12.51 | 5.50 |
6 | 25.92 | 4.99 | 24.86 | 2.60 | 4.14 | 1.89 | −0.86 | −0.15 | 14.40 | 5.30 | 12.61 | 2.89 | 15.77 | 3.65 | 15.51 | 3.46 |
7 | 43.89 | 14.75 | 39.17 | 12.12 | 7.74 | 3.38 | 3.42 | −0.24 | 15.48 | 8.08 | 11.34 | −0.59 | 19.55 | 17.10 | 14.60 | −15.82 |
8 | 28.96 | 7.37 | 27.62 | 6.52 | 4.33 | 5.24 | −2.97 | −4.69 | 6.89 | 6.39 | 5.80 | 1.62 | 9.96 | 5.28 | 8.06 | −4.82 |
9 | 30.13 | 8.55 | 21.64 | 7.45 | 11.00 | 3.51 | 7.34 | 0.74 | 12.68 | 8.83 | 8.11 | 1.47 | 7.87 | 11.47 | −5.09 | −10.85 |
10 | 16.96 | 4.38 | 9.81 | 2.17 | 6.01 | 3.99 | 4.98 | 3.38 | 4.04 | 1.52 | 2.22 | −0.81 | 8.21 | 4.31 | 8.03 | 4.17 |
11 | 31.58 | 11.23 | 28.30 | 9.99 | 5.90 | 5.61 | −0.18 | −0.65 | 18.85 | 8.21 | 18.00 | 7.51 | 22.37 | 10.00 | 22.17 | 9.93 |
12 | 16.91 | 7.08 | 11.69 | 6.02 | 3.09 | 4.31 | −1.36 | −2.85 | 3.27 | 3.65 | −2.41 | −2.57 | 6.75 | 2.04 | 6.41 | 1.38 |
13 | 19.64 | 7.54 | 16.42 | 3.54 | 4.59 | 3.43 | −3.24 | −3.23 | 9.72 | 6.82 | 8.69 | 5.80 | 20.08 | 8.70 | 19.91 | 8.66 |
14 | 24.19 | 12.73 | 23.67 | 11.95 | 2.48 | 3.57 | −1.31 | −2.97 | 5.93 | 8.02 | 1.62 | 5.84 | 10.71 | 8.63 | 10.36 | 8.45 |
15 | 13.09 | 10.51 | 11.67 | 9.85 | 6.43 | 1.85 | −5.69 | −1.03 | 4.70 | 6.92 | −3.10 | 5.54 | 5.77 | 7.97 | 5.61 | 7.72 |
16 | 5.71 | 5.44 | 0.91 | 4.10 | 9.48 | 4.90 | −8.97 | −4.63 | 4.20 | 4.94 | −2.50 | 3.69 | 4.55 | 5.11 | 3.75 | 4.83 |
17 | 8.56 | 6.97 | 4.78 | 5.34 | 8.85 | 4.38 | −8.31 | −4.10 | 5.15 | 9.31 | 2.83 | 7.76 | 6.34 | 7.63 | 5.80 | 7.57 |
18 | 6.61 | 6.40 | 4.64 | −2.55 | 11.91 | 5.68 | 11.54 | 5.62 | 5.59 | 3.56 | 2.64 | 1.83 | 20.81 | 16.23 | 20.77 | 16.17 |
19 | 8.58 | 4.69 | −5.87 | −4.13 | 5.96 | 2.49 | −4.55 | −1.72 | 4.10 | 5.48 | −0.93 | −4.74 | 4.24 | 3.98 | 4.08 | 3.79 |
20 | 8.84 | 4.22 | −4.01 | −3.28 | 8.27 | 4.16 | −7.55 | −3.48 | 4.32 | 4.14 | −0.48 | −2.93 | 3.58 | 3.66 | 3.16 | 3.08 |
21 | 16.92 | 5.81 | 12.85 | 4.15 | 6.22 | 4.60 | −4.80 | −3.99 | 7.28 | 7.62 | 5.78 | 2.71 | 8.90 | 6.42 | 5.31 | −5.98 |
22 | 8.88 | 2.94 | 3.55 | 0.46 | 6.72 | 4.77 | −5.94 | −4.37 | 7.80 | 5.68 | −2.71 | −2.74 | 3.95 | 5.79 | −1.79 | −4.15 |
23 | 2.27 | 0.94 | 0.16 | 0.83 | 1.64 | 0.79 | 0.41 | 0.59 | 1.65 | 1.33 | −0.70 | 0.65 | 2.85 | 2.42 | 2.36 | 2.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela, R.; DeCastro, M.; Rodriguez-Diaz, L.; Dias, J.M.; Gómez-Gesteira, M. Examining the Ability of CMIP6 Models to Reproduce the Upwelling SST Imprint in the Eastern Boundary Upwelling Systems. J. Mar. Sci. Eng. 2022, 10, 1970. https://doi.org/10.3390/jmse10121970
Varela R, DeCastro M, Rodriguez-Diaz L, Dias JM, Gómez-Gesteira M. Examining the Ability of CMIP6 Models to Reproduce the Upwelling SST Imprint in the Eastern Boundary Upwelling Systems. Journal of Marine Science and Engineering. 2022; 10(12):1970. https://doi.org/10.3390/jmse10121970
Chicago/Turabian StyleVarela, Rubén, Maite DeCastro, Laura Rodriguez-Diaz, João Miguel Dias, and Moncho Gómez-Gesteira. 2022. "Examining the Ability of CMIP6 Models to Reproduce the Upwelling SST Imprint in the Eastern Boundary Upwelling Systems" Journal of Marine Science and Engineering 10, no. 12: 1970. https://doi.org/10.3390/jmse10121970