Tsunami Vulnerability Evaluation for a Small Ancient Village on Eastern Sicily Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area
2.2. Relative Vulnerability Index Assessment
- Structural vulnerability (). The bearing capacity of a building structure that is the function of the horizontal hydrodynamic force;
- Water vulnerability (). The vulnerability of building to water intrusion.
2.3. Water Vulnerabilty Computational Chain
2.3.1. The Adopted Tsunami Scenario
2.3.2. Example of Hydrodynamics Results Treatments
2.4. Structural Vulnerability
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sundar, V.; Sannasiraj, S.A.; Murali, K.; Sriram, V. Tsunami: Engineering Perspective for Mitigation, Protection and Modelling; Number volume 50 in Advanced series on ocean engineering; World Scientific: Singapore, 2020. [Google Scholar] [CrossRef]
- Ambraseys, N.; Synolakis, C. Tsunami Catalogs for the Eastern Mediterranean, Revisited. J. Earthq. Eng. 2010, 14, 309–330. [Google Scholar] [CrossRef]
- Kelsey, H.M.; Witter, R.C.; Hemphill-Haley, E. Plate-boundary earthquakes and tsunamis of the past 5500 yr, Sixes River estuary, southern Oregon. Geol. Soc. Am. Bull. 2002, 114, 298–314. [Google Scholar] [CrossRef]
- Papathoma, M.; Dominey-Howes, D. Tsunami vulnerability assessment and its implications for coastal hazard analysis and disaster management planning, Gulf of Corinth, Greece. Nat. Hazards Earth Syst. Sci. 2003, 3, 733–747. [Google Scholar] [CrossRef] [Green Version]
- Papathoma, M.; Dominey-Howes, D.; Zong, Y.; Smith, D. Assessing tsunami vulnerability, an example from Herakleio, Crete. Nat. Hazards Earth Syst. Sci. 2003, 3, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Dall’Osso, F.; Dominey-Howes, D.; Tarbotton, C.; Summerhayes, S.; Withycombe, G. Revision and improvement of the PTVA-3 model for assessing tsunami building vulnerability using “international expert judgment”: Introducing the PTVA-4 model. Nat. Hazards 2016, 83, 1229–1256. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Gràcia, E.; Urgeles, R.; Sallares, V.; De Martini, P.M.; Pantosti, D.; González, M.; Yalciner, A.C.; Mascle, J.; Sakellariou, D.; et al. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Mar. Geol. 2014, 354, 81–109. [Google Scholar] [CrossRef]
- Alberico, I.; Di Fiore, V.; Iavarone, R.; Petrosino, P.; Piemontese, L.; Tarallo, D.; Punzo, M.; Marsella, E. The Tsunami Vulnerability Assessment of Urban Environments through Freely Available Datasets: The Case Study of Napoli City (Southern Italy). J. Mar. Sci. Eng. 2015, 3, 981–1005. [Google Scholar] [CrossRef] [Green Version]
- Bryant, E. Tsunami: The Underrated Hazard, 2nd ed.; Springer-Praxis books in geophysical sciences; Springer Published in Association with Praxis: Chichester, UK, 2008. [Google Scholar]
- Quiñones-Bustos, C.; Bull, M.T.; Oyarzo-Vera, C. Seismic and Coastal Vulnerability Assessment Model for Buildings in Chile. Buildings 2021, 11, 107. [Google Scholar] [CrossRef]
- Williams, J.H.; Wilson, T.M.; Horspool, N.; Paulik, R.; Wotherspoon, L.; Lane, E.M.; Hughes, M.W. Assessing transportation vulnerability to tsunamis: Utilising post-event field data from the 2011 Tōhoku tsunami, Japan, and the 2015 Illapel tsunami, Chile. Nat. Hazards Earth Syst. Sci. 2020, 20, 451–470. [Google Scholar] [CrossRef] [Green Version]
- Sathiparan, N. An assessment of building vulnerability to a tsunami in the Galle coastal area, Sri Lanka. J. Build. Eng. 2020, 27, 100952. [Google Scholar] [CrossRef]
- Dall’Osso, F.; Gonella, M.; Gabbianelli, G.; Withycombe, G.; Dominey-Howes, D. A revised (PTVA) model for assessing the vulnerability of buildings to tsunami damage. Nat. Hazards Earth Syst. Sci. 2009, 9, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- Batzakis, D.V.; Misthos, L.M.; Voulgaris, G.; Tsanakas, K.; Andreou, M.; Tsodoulos, I.; Karymbalis, E. Assessment of Building Vulnerability to Tsunami Hazard in Kamari (Santorini Island, Greece). J. Mar. Sci. Eng. 2020, 8, 886. [Google Scholar] [CrossRef]
- Gauraz, A.L.; Valencia, N.; Koscielny, M.; Guillande, R.; Gardi, A.; Frédéric, L.; Salaün, T. Tsunami Damages Assessment: Vulnerability Functions on Buildings Based on Field and Earth Observation Survey; EGU: Vienna, Austria, 2009. [Google Scholar]
- Mueller, C.; Micallef, A.; Spatola, D.; Wang, X. The Tsunami Inundation Hazard of the Maltese Islands (Central Mediterranean Sea): A Submarine Landslide and Earthquake Tsunami Scenario Study. Pure Appl. Geophys. 2020, 177, 1617–1638. [Google Scholar] [CrossRef]
- Presti, D.; Billi, A.; Orecchio, B.; Totaro, C.; Faccenna, C.; Neri, G. Earthquake focal mechanisms, seismogenic stress, and seismotectonics of the Calabrian Arc, Italy. Tectonophysics 2013, 602, 153–175. [Google Scholar] [CrossRef]
- Lo Presti, V.; Antonioli, F.; Auriemma, R.; Ronchitelli, A.; Scicchitano, G.; Spampinato, C.; Anzidei, M.; Agizza, S.; Benini, A.; Ferranti, L.; et al. Millstone coastal quarries of the Mediterranean: A new class of sea level indicator. Quat. Int. 2014, 332, 126–142. [Google Scholar] [CrossRef]
- Billi, A.; Minelli, L.; Orecchio, B.; Presti, D. Runup Distribution for the 1908 Messina Tsunami in Italy: Observed Data versus Expected Curves. Bull. Seismol. Soc. Am. 2009, 99, 3502–3509. [Google Scholar] [CrossRef]
- Anita, G.; Sandri, L.; Marzocchi, W.; Argnani, A.; Gasparini, P.; Selva, J. Probabilistic tsunami hazard assessment for Messina Strait Area (Sicily, Italy). Nat. Hazards 2012, 64, 329–358. [Google Scholar] [CrossRef]
- Grezio, A.; Gasparini, P.; Marzocchi, W.; Patera, A.; Tinti, S. Tsunami risk assessments in Messina, Sicily—Italy. Nat. Hazards Earth Syst. Sci. 2012, 12, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Barbano, M.; Pirrotta, C.; Gerardi, F. Large boulders along the south-eastern Ionian coast of Sicily: Storm or tsunami deposits? Mar. Geol. 2010, 275, 140–154. [Google Scholar] [CrossRef]
- Lo Re, C.; Manno, G.; Ciraolo, G. Tsunami Propagation and Flooding in Sicilian Coastal Areas by Means of a Weakly Dispersive Boussinesq Model. Water 2020, 12, 1448. [Google Scholar] [CrossRef]
- Samaras, A.G.; Karambas, T.V.; Archetti, R. Simulation of tsunami generation, propagation and coastal inundation in the Eastern Mediterranean. Ocean Sci. 2015, 11, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Schambach, L.; Grilli, S.T.; Kirby, J.T.; Shi, F. Landslide Tsunami Hazard Along the Upper US East Coast: Effects of Slide Deformation, Bottom Friction, and Frequency Dispersion. Pure Appl. Geophys. 2019, 176, 3059–3098. [Google Scholar] [CrossRef]
- Ananda Putra Suardana, A.A.M.; Sugianto, D.N.; Helmi, M. Study of Characteristics and the Coverage of Tsunami Wave Using 2D Numerical Modeling in the South Coast of Bali, Indonesia. Int. J. Oceans Oceanogr. 2019, 13, 237–250. [Google Scholar]
- Wolff, C.; Nikoletopoulos, T.; Hinkel, J.; Vafeidis, A.T. Future urban development exacerbates coastal exposure in the Mediterranean. Sci. Rep. 2020, 10, 14420. [Google Scholar] [CrossRef]
- Satta, A.; Puddu, M.; Venturini, S.; Giupponi, C. Assessment of coastal risks to climate change related impacts at the regional scale: The case of the Mediterranean region. Int. J. Disaster Risk Reduct. 2017, 24, 284–296. [Google Scholar] [CrossRef]
- Nicholls, R.; Hoozemans, F. The Mediterranean: Vulnerability to coastal implications of climate change. Ocean Coast. Manag. 1996, 31, 105–132. [Google Scholar] [CrossRef]
- Alexander, D.E. Confronting Catastrophe: New Perspectives on Natural Disasters; OCLC: 474857151; Terra: Harpenden, UK, 2000. [Google Scholar]
- Dominey-Howes, D.; Papathoma, M. Validating a Tsunami Vulnerability Assessment Model (the PTVA Model) Using Field Data from the 2004 Indian Ocean Tsunami. Nat. Hazards 2007, 40, 113–136. [Google Scholar] [CrossRef]
- Dominey-Howes, D.; Dunbar, P.; Varner, J.; Papathoma-Köhle, M. Estimating probable maximum loss from a Cascadia tsunami. Nat. Hazards 2010, 53, 43–61. [Google Scholar] [CrossRef]
- Dalrymple, R.A.; Kriebel, D. Bridge-Washington-National-Academy of Engineering. Lessons Eng. Tsunami Thail. 2005, 35, 6–15. [Google Scholar]
- Aricò, C.; Lo Re, C. A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography. Adv. Water Resour. 2016, 98, 47–69. [Google Scholar] [CrossRef] [Green Version]
- Romano, F.; Gusman, A.R.; Power, W.; Piatanesi, A.; Volpe, M.; Scala, A.; Lorito, S. Tsunami Source of the 2021 M W 8.1 Raoul Island Earthquake From DART Tide-Gauge Data Inversion. Geophys. Res. Lett. 2021, 48, e2021GL094449. [Google Scholar] [CrossRef]
- Selva, J.; Lorito, S.; Volpe, M.; Romano, F.; Tonini, R.; Perfetti, P.; Bernardi, F.; Taroni, M.; Scala, A.; Babeyko, A.; et al. Probabilistic tsunami forecasting for early warning. Nat. Commun. 2021, 12, 5677. [Google Scholar] [CrossRef] [PubMed]
- Basili, R.; Brizuela, B.; Herrero, A.; Iqbal, S.; Lorito, S.; Maesano, F.E.; Murphy, S.; Perfetti, P.; Romano, F.; Scala, A.; et al. The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18). Front. Earth Sci. 2021, 8, 616594. [Google Scholar] [CrossRef]
- Oliveri, E.; Santoro, M. Estimation of urban structural flood damages: The case study of Palermo. Urban Water 2000, 2, 223–234. [Google Scholar] [CrossRef]
Zone | Total Number of Building | Use | Construction Types | Stories | Storey Height (m) | Percentage of Openings (%) | Shape | Number of Buildings |
---|---|---|---|---|---|---|---|---|
A1 | 350 | Civil | Masonry and wooden floors | 1 | 4–6 | <50 | Pseudo-rectangular or irregular | 36 |
Masonry and wooden floors, cement-based brick floors or mixed structures | From 1 to 3 | 3–4 | >50 | Pseudo-rectangular or rectangular | 161 | |||
Reinforced concrete and rigid frames with brick–cement floors | 3 | 3–4 | <50 | Pseudo-rectangular | 5 | |||
2 | 3–4 | <50 | Pseudo-square | 65 | ||||
1–2 | 3–4 | <50 | Irregular | 61 | ||||
2 | 3–4 | <75 | Rectangular | 22 | ||||
A2 | 365 | Civil | Reinforced concrete and rigid frames with brick–cement floors | From 1 to 3 | 3–4 | <50 | Pseudo-rectangular | 164 |
2 | 3–4 | <50 | Pseudo-square | 14 | ||||
1–2 | 3–4 | <50 | Irregular | 142 | ||||
2 | 3–4 | <75 | Rectangular | 45 | ||||
A3 | 85 | Civil | Reinforced concrete and rigid frames with brick–cement floors | From 1 to 3 | 3–4 | <50 | Pseudo-rectangular | 28 |
2 | 3–4 | <50 | Irregular | 12 | ||||
2 | 3–4 | <75 | Rectangular | 26 | ||||
Reinforced concrete and rigid frames with brick–cement floors with the possibility of two-dimensional elements (reinforced concrete partitions) | 4 | 3–4 | <75 | Rectangular | 6 | |||
Artisan/Agricultural | Panels and metal frame | 1 | 4–6 | <50 | Rectangular | 1 | ||
Artisanal/Industrial | Mixed masonry and reinforced concrete structures | 1 | 6–8 | <75 | Rectangular | 9 | ||
Residence/Deposits | Masonry and elements in reinforced concrete, with roofing in lightweight deformable materials | 1 | 3–4 | <50 | Rectangular | 1 | ||
Masonry with roofing in lightweight deformable materials | 1 | 3–4 | <25 | Rectangular | 2 | |||
A4 | 184 | Civil | Reinforced concrete and rigid frames with brick–cement floors | From 1 to 3 | 3–4 | <50 | Pseudo-rectangular | 95 |
2 | 3–4 | <50 | Irregular | 9 | ||||
2 | 3–4 | <50 | Pseudo-square | 1 | ||||
2 | 3–4 | <75 | Rectangular | 34 | ||||
Reinforced concrete and rigid frames with brick–cement floors with the possibility of two-dimensional elements (reinforced concrete partitions) | 4 | 3–4 | <75 | Rectangular | 9 | |||
Artisan/Agricultural | Mixed masonry and reinforced concrete structures | 1 | 4–6 | <75 | Pseudo-rectangular | 13 | ||
Panels and metal frame | 1 | 4–6 | <50 | Rectangular | 8 | |||
Artisan/Industrial | Nonviable buildings without roofing and stiffening walls | 1 | 6–8 | = 25 | Rectangular | 10 | ||
Residence/Deposits | Masonry with roofing in lightweight deformable materials | 1 | 3–4 | <25 | Rectangular | 2 | ||
Masonry and elements in reinforced concrete, with roofing in lightweight deformable materials | 1 | 3–4 | <50 | Rectangular | 3 |
Zone | Total Number of Building | Mean RVI | Building Use Categories | Number of Building | Vulnerability Classes | ||||
---|---|---|---|---|---|---|---|---|---|
Minor | Moderate | Average | High | Very High | |||||
A1 | 350 | 2.58 | E1 | 17 | 14 | 1 | 0 | 1 | 1 |
E2 | 2 | 2 | 0 | 0 | 0 | 0 | |||
E3 | 328 | 51 | 85 | 83 | 76 | 33 | |||
E4 | 3 | 0 | 0 | 1 | 2 | 0 | |||
A2 | 365 | 1.53 | E1 | 6 | 5 | 0 | 0 | 1 | 0 |
E3 | 359 | 283 | 20 | 38 | 17 | 1 | |||
A3 | 85 | 2.23 | E1 | 1 | 1 | 0 | 0 | 0 | 0 |
E3 | 84 | 19 | 45 | 15 | 4 | 1 | |||
A4 | 184 | 1.64 | E1 | 4 | 4 | 0 | 0 | 0 | 0 |
E2 | 1 | 1 | 0 | 0 | 0 | 0 | |||
E3 | 179 | 137 | 23 | 3 | 12 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Re, C.; Manno, G.; Basile, M.; Ferrotto, M.F.; Cavaleri, L.; Ciraolo, G. Tsunami Vulnerability Evaluation for a Small Ancient Village on Eastern Sicily Coast. J. Mar. Sci. Eng. 2022, 10, 268. https://doi.org/10.3390/jmse10020268
Lo Re C, Manno G, Basile M, Ferrotto MF, Cavaleri L, Ciraolo G. Tsunami Vulnerability Evaluation for a Small Ancient Village on Eastern Sicily Coast. Journal of Marine Science and Engineering. 2022; 10(2):268. https://doi.org/10.3390/jmse10020268
Chicago/Turabian StyleLo Re, Carlo, Giorgio Manno, Mirko Basile, Marco Filippo Ferrotto, Liborio Cavaleri, and Giuseppe Ciraolo. 2022. "Tsunami Vulnerability Evaluation for a Small Ancient Village on Eastern Sicily Coast" Journal of Marine Science and Engineering 10, no. 2: 268. https://doi.org/10.3390/jmse10020268
APA StyleLo Re, C., Manno, G., Basile, M., Ferrotto, M. F., Cavaleri, L., & Ciraolo, G. (2022). Tsunami Vulnerability Evaluation for a Small Ancient Village on Eastern Sicily Coast. Journal of Marine Science and Engineering, 10(2), 268. https://doi.org/10.3390/jmse10020268