Characteristics and Trends of Ocean Remote Sensing Research from 1990 to 2020: A Bibliometric Network Analysis and Its Implications
Abstract
:1. Introduction
2. Methodology and Data Gathering
3. Results
3.1. The Characteristics Analysis of Publication Outputs
3.1.1. General Trends of Publication Outputs
3.1.2. Distribution of Publications in Major Journals
3.2. Research Influence and Cooperation Analysis
3.2.1. Influence Distribution and Cooperation among Major Countries
3.2.2. Influence Distribution and Cooperation among Core Institutions
3.3. Research Hotspots Analysis
3.3.1. Characteristics of Subject Categories Distribution
3.3.2. Analysis of Co-Occurrence Keywords
3.3.3. Theme Evolution Visualization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, M.Z.; Zhang, C.H.; Wang, Z.L.; Jiang, M.J.; Wang, W. The Concept and identification of ecologically and biologically significant areas: Case study in the Huanghe river estuary. Haiyang Xuebao 2016, 38, 22–33. [Google Scholar]
- Wang, F.T.; Yu, R.C.; Li, J.X.; Mao, D.H.; Wang, C.Y.; Jia, M.M.; Liao, J.J.; Hu, Z.Y.; Gu, H.F.; Wei, Q.S.; et al. Big earth data in support of marine sustainable development. Bull. Chin. Acad. Sci. 2021, 36, 932–939. [Google Scholar]
- United Nations Environment Programme. Global Environment Outlook-GEO-6: Healthy Planet, Healthy People; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Nellemann, C.; MacDevette, M.; Manders, T.; Eickhout, B.; Svihus, B.; Prins, A.G.; Kaltenborn, B.P. The Environmental Food Crisis: The environment’s Role in Averting Future Food Crises: A UNEP Rapid Response Assessment; UNEP: Nairobi, Kenya, 2009. [Google Scholar]
- Notz, D.; Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 2016, 354, 747–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, W.W.L.; Reygondeau, G.; Frolicher, T.L. Large benefits to marine fisheries of meeting the 1.5 °C global warming target. Science 2016, 354, 1591–1594. [Google Scholar]
- Tiit, K.; John, H.; Claudia, G.; Chris, R.; Vittorio, E.B. Remote sensing of shallow waters—A 50 year retrospective and future directions. Remote Sens. Environ. 2020, 240, 111619. [Google Scholar]
- He, H.; Wei, W. Monitoring southwest drought of China using HJ-1A/B and Landsat remote sensing data. Proc. SPIE-Int. Soc. Opt. Eng. 2012, 8524, 10. [Google Scholar]
- Dong, L.N.; Tong, J.; Wang, C.Y. The Application of airborne remote sensing technology in land and resources. Appl. Mech. Mater. 2014, 644–650, 4360–4363. [Google Scholar] [CrossRef]
- Fink, P.; Harrod, C. Carbon and nitrogen stable isotopes reveal the use of pelagic resources by the invasive Ponto-Caspian mysid Limnomysis benedeni. Isot. Environ. Health Stud. 2013, 49, 312–317. [Google Scholar] [CrossRef]
- Catherine, K.; de Aline, M.V.; Nick, W.; Luke, L.; Henrique, O.S.; Milton, K.; Jeffrey, R.; Philipp, S.; John, C.; Rob, S.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar]
- Konstantinos, T.; Dimitris, P.; Giuseppe, S.; Stefano, A. Floating marine litter detection algorithms and techniques using optical remote sensing data: A review. Mar. Pollut. Bull. 2021, 170, 112675. [Google Scholar]
- Zhao, H.B.; Gu, Y.C.; Fan, D.M.; Qiu, C.H.; Su, C.P.; Fang, W.H. Seasonal sea level variations in the Red Sea inferred from satellite altimetry, GRACE and temperature and salinity data. Acta Geod. Cartogr. Sin. 2019, 48, 1119–1128. [Google Scholar]
- Cui, T.W.; Ding, J.; Jia, F.; Mu, B.; Liu, R.J.; Xu, P.M.; Liu, J.Q.; Zhang, J. Out-of-Band 13. response for the Coastal Zone Imager (CZI) onboard China’s ocean color satellite HY-1C: Effect on the observation just above the sea surface. Sensors 2018, 18, 3067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhang, Z.H.; Ma, Y.; Shi, H.H.; Ma, A.Q.; Zheng, W.; Wang, Q.X.; Peng, Y.L.; Liu, J. Program for service evaluation of marine ecosystems in China waters. Adv. Earth Sci. 2006, 21, 1127–1133. [Google Scholar]
- Yun, C.X. Progress and prospect of marine remote sensing. Adv. Earth Sci. 1993, 8, 14–20. [Google Scholar]
- Sulich, A.; Sołoducho-Pelc, L.; Ferasso, M. Management Styles and Decision-Making: Pro-Ecological Strategy Approach. Sustainability 2021, 13, 1604. [Google Scholar] [CrossRef]
- Aerospace Information Research Institute, Chinese Academy of Sciences. Available online: http://www.irsa.ac.cn/kxcb/ygzs/201102/t20110222-_3074668.html (accessed on 30 August 2021).
- Guo, J.J.; Tsang, L.; Asher, W.; Ding, K.H.; Chen, C.T. Applications of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1019–1027. [Google Scholar] [CrossRef]
- Kleidman, R.G.; O’Neill, N.T.; Remer, L.A.; Kaufman, Y.J.; Eck, T.F.; Tanre, D.; Dubovik, O.; Holben, B.N. Comparison of moderate resolution Imaging spectroradiometer (MODIS) and aerosol robotic network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean. J. Geophys. Res. Atmos. 2005, 110, D22205. [Google Scholar] [CrossRef]
- Platt, T.; Sathyendranath, S. Ecological indicators for the pelagic zone of the ocean from remote sensing. Remote Sens. Environ. 2008, 112, 3426–3436. [Google Scholar] [CrossRef]
- Mao, Z.H.; Pan, D.L.; He, X.Q.; Chen, J.Y.; Tao, B.Y.; Chen, P.; Hao, Z.Z.; Bai, Y.; Zhu, Q.K.; Huang, H.Q. A unified algorithm for the atmospheric correction of satellite remote sensing data over land and ocean. Remote Sens. 2016, 8, 536. [Google Scholar] [CrossRef] [Green Version]
- Li, X.F.; Liu, B.; Zheng, G.; Ren, Y.B.; Zhang, S.S.; Liu, Y.J.; Gao, L.; Liu, Y.H.; Zhang, B.; Wang, F. Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef]
- Su, H.; Zhang, H.; Geng, X.; Qin, T.; Lu, W.; Yan, X.H. OPEN: A New Estimation of Global Ocean Heat Content for Upper 2000 Meters from Remote Sensing Data. Remote Sens. 2020, 12, 2294. [Google Scholar] [CrossRef]
- Lonneke, G.M.; Steef, P.; van Erik, S.; Neil, A.J.; Stuart, G. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics. Mar. Pollut. Bull. 2018, 126, 255–262. [Google Scholar]
- Salgado-Hernanz, P.M.; Racault, M.F.; Font-Muñoz, J.S.; Basterretxea, G. Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing. Remote Sens. Environ. 2019, 221, 50–64. [Google Scholar] [CrossRef]
- Loisel, H.; Stramski, D.; Dessailly, D.; Jamet, C.; Li, L.H.; Reynolds, R.A. An inverse model for estimating the optical absorption and backscattering coefficients of seawater from remote-sensing reflectance over a broad range of oceanic and coastal marine environments. J. Geophys. Res. Ocean. 2018, 123, 2141–2171. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical bibliography or bibliometrics? J. Doc. 1969, 25, 348–349. [Google Scholar]
- Khudzari, J.M.; Kurian, J.; Tartakovsky, B.; Raghavan, G.S.V. Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem. Eng. J. 2018, 136, 51–60. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Aparicio, G.; Iturralde, T.; Maseda, A. Conceptual structure and perspectives on entrepreneurship education research: A bibliometric review. Eur. Res. Manag. Bus. Econ. 2019, 25, 105–113. [Google Scholar] [CrossRef]
- Leng, S.Y. The Geographical Sciences during 1986–2015: From the Classics to the Frontiers; The Commercial Press: Beijing, China, 2016. [Google Scholar]
- Merigo, J.M.; Yang, J.B. A bibliometric analysis of operations research and management science. Omega 2017, 73, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Ospina-Mateus, H.; Quintana Jiménez, L.A.; Lopez-Valdes, F.J.; Salas-Navarro, K. Bibliometric analysis in motorcycle accident research: A global overview. Scientometrics 2019, 121, 793–815. [Google Scholar] [CrossRef]
- Zhang, J.D.; Jiang, L.P.; Liu, Z.H.; Li, Y.N.; Liu, K.L.; Fang, R.Y.; Li, H.H.; Qu, Z.G.; Liu, C.Y.; Li, F. A bibliometric and visual analysis of indoor occupation environmental health risks: Development, hotspots and trend directions. J. Clean. Prod. 2021, 300, 126824. [Google Scholar] [CrossRef]
- Cheng, Q.; Hu, W.; Bai, Z. Research trends of development on pearl bivalve mollusks based on a bibliometric network analysis in the past 25 Years. Front. Mar. Sci. 2021, 8, 657263. [Google Scholar] [CrossRef]
- Li, Y.X.; Wang, Y.; Rui, X.; Li, Y.; Wang, H.Z.; Zuo, J.; Tong, Y.D. Sources of atmospheric pollution: A bibliometric analysis. Scientometrics 2017, 112, 1025–1045. [Google Scholar] [CrossRef]
- Khalid, F.E.; Lim, Z.S.; Sabri, S.; Gomez-Fuentes, C.; Zulkharnain, A.; Ahmad, S.A. Bioremediation of diesel contaminated marine water by bacteria: A review and bibliometric analysis. J. Mar. Sci. Eng. 2021, 9, 155. [Google Scholar] [CrossRef]
- Choi, W.; Kim, J.; Lee, S.E.; Park, E. Smart home and internet of things: A bibliometic study. J. Clean. Prod. 2021, 301, 126908. [Google Scholar] [CrossRef]
- Martínez Vázquez, R.M.; Milán García, J.; De Pablo Valenciano, J. Analysis and Trends of global research on nautical, maritime and marine tourism. J. Mar. Sci. Eng. 2021, 9, 93. [Google Scholar] [CrossRef]
- Huang, Y.L.; Huang, Q.; Ali, S.; Zhai, X.; Bi, X.M.; Liu, R.Q. Rehabilitation using virtual reality technology: A bibliometric analysis, 1996-2015. Scientometrics 2016, 109, 1547–1559. [Google Scholar] [CrossRef]
- Luo, Z.; Miao, F.Z.; Hu, M.H.; Wang, Y.J. Research development on horseshoe crab: A 30-year bibliometric analysis. Front. Mar. Sci. 2020, 7, 41. [Google Scholar] [CrossRef]
- Hou, Y.L.; Wang, Q.W. A bibliometric study about energy, environment, and climate change. Environ. Sci. Pollut. Res. 2021, 28, 34187–34199. [Google Scholar] [CrossRef]
- Zeng, J.J.; Qu, J.S.; Ma, H.Q.; Gou, X.H. Characteristics and trends of household carbon emissions research from 1993 to 2019: A bibliometric analysis and its implications. J. Clean. Prod. 2021, 295, 126468. [Google Scholar] [CrossRef]
- Van, E.N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waltman, L.; Van, E.N.J.; Noyons, E. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Duan, P.L.; Wang, Y.Q.; Yin, P. Remote Sensing Applications in Monitoring of Protected Areas: A bibliometric analysis. Remote Sens. 2020, 12, 772. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.B. A scientometric review of global BIM research: Analysis and visualization. Autom. Constr. 2017, 80, 37–47. [Google Scholar] [CrossRef]
- Stehling, K.R. Remote sensing of oceans. Atronautics Aeronaut. 1969, 7, 62–66. [Google Scholar]
- Buettner, K.J.; Katsaros, K.; Martin, L. Problems in remote sensing of sea surface qualities. Trans.-Am. Geophys. Union 1969, 50, 158. [Google Scholar]
- Vinograd, V.V.; Lazarenk, N.N. Some Results of use of doppler effect for remote sensing of sea waves. Oceanology-USSR 1969, 9, 414. [Google Scholar]
- Wang, B.J.; Zhang, Q.; Cui, F.Q. Scientific research on ecosystem services and human well-being: A bibliometric analysis. Ecol. Indic. 2021, 125, 107449. [Google Scholar] [CrossRef]
- Yin, X.X.; Zhang, G.P.; Li, X.F. A Research situation analysis of information sciences based on keywords statistics. J. Intell. 2009, 28, 1–4. [Google Scholar]
- Zhang, G.B.; Li, P.C.; Lu, W.; Cheng, Q.K. Research on keyword semantic function recognition based on multi-feature fusion. Libr. Inf. Serv. 2021, 65, 89–96. [Google Scholar]
- Liu, F.; Lin, A.; Wang, H.; Peng, Y.; Hong, S. Global research trends of geographical information system from 1961 to 2010: A bibliometric analysis. Scientometrics 2016, 106, 751–768. [Google Scholar] [CrossRef]
- Ouyang, W.; Wang, Y.D.; Lin, C.Y.; He, M.C.; Hao, F.H.; Liu, H.B.; Zhu, W.H. Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Sci. Total Environ. 2018, 637, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.L.; Leng, F.H. Research on the improvement of subject topic evolution method based on co-word analysis. Inf. Stud. Theory Appl. 2012, 35, 79–82. [Google Scholar]
- Jiao, H.; Li, X.X. Identification of the knowledge evolution path in disciplinary field based on research topic: Taking the rough set of information science and library science as an example. Inf. Stud. Theory Appl. 2019, 42, 101–106. [Google Scholar]
- Wang, X.G.; Cheng, Q.K.; Lu, W. Analyzing evolution of research topics with NEViewer: A new method based on dynamic co-word networks. Scientometrics 2014, 101, 1253–1271. [Google Scholar] [CrossRef]
- Meng, S.; Xiong, D.P. Review and exploration of china subtropical climate change research based on scientometric analysis. Trop. Conserv. Sci. 2018, 11, 13. [Google Scholar] [CrossRef]
- Yang, W.T.; Zhang, J.T.; Ma, R.L. The prediction of infectious diseases: A bibliometric analysis. Int. J. Environ. Res. Public Health 2020, 17, 6218. [Google Scholar] [CrossRef]
- Edwards, M.; Richardson, A. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 2004, 430, 881–884. [Google Scholar] [CrossRef]
- Allison, L.P.; Paula, J.L.; Jim, R.E.; John, D.R. Climate change and distribution shifts in marine fishes. Science 2005, 308, 1912–1915. [Google Scholar]
- Moore, C.J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 2008, 108, 131–139. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Bruno, J.F. The impact of climate change on the world’s marine ecosystems. Science 2010, 328, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Muller-Karger, F.; Roffer, M.; Walker, N.; Oliver, M.; Schofield, O.; Abbott, M.; Graber, H.; Leben, R.; Goni, G. Satellite Remote Sensing in Support of an Integrated Ocean Observing System. IEEE Geosci. Remote Sens. Mag. 2013, 1, 8–18. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Colna, K.E.; El-Mezayen, M.M.; Laureano-Rosario, A.E.; Mendez-Lazaro, P.; Otis, D.B.; Toro-Farmer, G.; Vega-Rodriguez, M.; Muller-Karger, F.E. Satellite remote sensing for coastal management: A review of successful applications. Environ. Manag. 2017, 60, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Peng, B. Application research of marine remote sensing technology in the development of fishery economy. J. Coast. Res. 2019, 94, 783–787. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, W.Q.; Jiang, Y.W. New insight into smart ocean: How is it different from digital ocean? Int. J. Digit. Earth 2019, 12, 1457–1464. [Google Scholar] [CrossRef]
- Kavanaugh, M.T.; Bell, T.; Catlett, D.; Cimino, M.A.; Doney, S.C.; Klajbor, W.; Messié, M.; Montes, E.; Muller-Karger, F.E.; Otis, D.; et al. Satellite remote sensing and the Marine Biodiversity Observation Network: Current science and future steps. Oceanography 2021, 34, 62–79. [Google Scholar] [CrossRef]
- Wang, J.P.; Qu, J.S.; Ma, J.Z. Analysis on development of global virtual water research based on bibliometric method. Adv. Earth Sci. 2018, 33, 653–663. [Google Scholar] [CrossRef]
- Barth, J.A.; Allen, S.E.; Dever, E.P.; Dewey, R.K.; Evans, W.; Feely, R.A.; Fisher, J.L.; Fram, J.P.; Hales, B.; Ianson, D.; et al. Better regional ocean observing through cross-national cooperation: A case study from the northeast Pacific. Front. Mar. Sci. 2019, 6, 1–13. [Google Scholar] [CrossRef]
- Wang, H.; Liu, N.; Zhang, Y.F.; Zhang, T.Y.; Ren, X.X. Risk prevention of marine and meteorological disasters along the “21st Century Maritime Silk Road”. Chin. Sci. Bull. 2020, 65, 453–462. [Google Scholar] [CrossRef]
- Huot, Y.; Antoine, D. Remote sensing reflectance anomalies in the ocean. Remote Sens. Environ. 2016, 184, 101–111. [Google Scholar] [CrossRef]
- Melin, F.; Sclep, G.; Jackson, A.; Sathyendranath, S. Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets. Remote Sens. Environ. 2016, 177, 107–124. [Google Scholar] [CrossRef]
- Umbert, M.; Guimbard, S.; Ballabrera Poy, J.; Turiel, A. Synergy between Ocean Variables: Remotely Sensed Surface Temperature and Chlorophyll Concentration Coherence. Remote Sens. 2020, 12, 1153. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.W.; Lee, Z.P.; Garcia, R.; Zoffoli, L.; Armstrong, R.A.; Shang, Z.H.; Sheldon, P.; Chen, R.F. An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters. Remote Sens. Environ. 2018, 215, 18–32. [Google Scholar] [CrossRef]
- El Mahrad, B.; Newton, A.; Icely, J.D.; Kacimi, I.; Abalansa, S.; Snoussi, M. Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: A review. Remote Sens. 2020, 12, 2313. [Google Scholar] [CrossRef]
Journal | Cited Frequency | Total Publications | IF 1 |
---|---|---|---|
Remote Sensing of Environment | 30,303 | 681 | 10.164 |
IEEE Transactions on Geoscience and Remote Sensing | 29,191 | 667 | 5.600 |
Journal of Geophysical Research: Oceans | 20,201 | 508 | 3.405 |
Journal of Geophysical Research: Atmospheres | 17,730 | 296 | 4.261 |
Applied Optics | 10,089 | 177 | 1.980 |
International Journal of Remote Sensing | 9258 | 476 | 3.151 |
Remote Sensing | 8364 | 785 | 4.848 |
Geophysical Research Letters | 8154 | 221 | 4.720 |
Estuarine Coastal and Shelf Science | 5224 | 172 | 2.929 |
Marine Ecology Progress Series | 4827 | 101 | 2.824 |
Journal of Coastal Research | 4026 | 281 | 0.854 |
Deep-sea Research Part II-Topical Studies in Oceanography | 3863 | 93 | 2.732 |
Continental Shelf Research | 3835 | 135 | 2.391 |
Atmospheric Chemistry and Physics | 3601 | 103 | 6.133 |
Journal of Marine Systems | 3459 | 119 | 2.542 |
Institution | Country | Total Publications | Percentage % | Citations | Citation per Paper |
---|---|---|---|---|---|
NASA | United States | 764 | 6.49 | 42,712 | 55.9 |
Chinese Acad Sci | China | 702 | 5.96 | 9985 | 14.2 |
NOAA | United States | 515 | 4.37 | 21,892 | 42.5 |
Caltech | United States | 331 | 2.81 | 13,626 | 41.2 |
State Ocean Adm | China | 238 | 2.02 | 3256 | 13.7 |
Univ S Florida | United States | 231 | 1.96 | 13,495 | 58.4 |
Univ Chinese Acad Sci | China | 220 | 1.87 | 2047 | 9.3 |
Univ Colorado | United States | 209 | 1.77 | 8987 | 43.0 |
Univ Calif San Diego | United States | 206 | 1.75 | 9432 | 45.8 |
Univ Washington | United States | 202 | 1.72 | 8878 | 43.9 |
Univ Maryland | United States | 199 | 1.69 | 11,925 | 59.9 |
Russian Acad Sci | Russia | 196 | 1.66 | 3038 | 15.5 |
Plymouth Marine Lab | United Kingdom | 182 | 1.55 | 5765 | 31.7 |
Univ Miami | United States | 159 | 1.35 | 5637 | 35.5 |
Ocean Univ China | China | 156 | 1.32 | 2388 | 15.3 |
Oregon State Univ | United States | 152 | 1.29 | 6747 | 44.3 |
CNRS | France | 143 | 1.21 | 8404 | 58.8 |
IFREMER | France | 129 | 1.10 | 4184 | 32.4 |
Nanjing Uuiv Informat Sci & Technol | China | 117 | 0.99 | 1260 | 10.8 |
Univ Calif Los Angeles | United States | 107 | 0.91 | 3732 | 34.9 |
Rank | Subject Categories | Number of Publications | Percentage % | Average Citations per Paper |
---|---|---|---|---|
1 | Remote Sensing | 3628 | 30.81 | 25.44 |
2 | Environment Sciences | 3301 | 28.03 | 22.27 |
3 | Imaging Science and Photographic Technology | 3257 | 27.66 | 26.84 |
4 | Geosciences and Multidisciplinary | 2984 | 25.34 | 20.94 |
5 | Oceanography | 2414 | 20.50 | 27.92 |
6 | Meteorology and Atmospheric Sciences | 1706 | 14.49 | 35.12 |
7 | Engineering, Electrical and Electronic | 1146 | 9.73 | 32.42 |
8 | Geography Physical | 1135 | 9.63 | 20.47 |
9 | Marine and Freshwater Biology | 1051 | 8.92 | 25.35 |
10 | Geochemistry & Geophysics | 1045 | 8.87 | 36.22 |
11 | Water Resources | 535 | 4.54 | 20.01 |
12 | Ecology | 527 | 4.47 | 33.85 |
13 | Optics | 497 | 4.22 | 30.39 |
14 | Engineering and Ocean | 342 | 2.90 | 18.84 |
Cluster | Keywords (Total Link Strength) | Items |
---|---|---|
1 | Satellite Remote Sensing (436), Arctic (351), SeaWiFS (252), Synthetic Aperture Radar (238), Radiative Transfer (178), Sea Surface (169), Radar (112), Precipitation (95), ENSO (89), Radar Remote Sensing (88), Vegetation (85), Oceanography (81), Polarization (71), Clouds (70), Ocean (68), Temperature (68), Ship Detection (67) | 32 |
2 | Sea Ice (353), AVHRR (215), Hyperspectral (162), L-Band (131), Calibration (119), Monitoring (117), Colored Dissolved Organic Matter (92), Classification(86), Data Assimilation (84), Change Detection (80), Ocean Remote Sensing (78), Coral Reefs (77), Satellite Imagery (57), Erosion (54), South China Sea (52), Bathymetry(48), Sea Level Rise(46) | 25 |
3 | MODIS (680), Landsat (290), Chlorophyll-A (253), Atmospheric Correction (193), Remote Sensing Reflectance (187), MERIS (160), Water Quality (109), Primary Production (97), Random Forest (95), Suspended Particulate Matter (65), East China Sea (56), Baltic Sea (50), Retrieval (50), Neural Networks (49), Seagrass (48), Oil Spill (48), Geo-Stationary Ocean Color Imager (48) | 25 |
4 | Ocean Color (889), Chlorophyll (390), Climate Change (315), Sea Surface Temperature (277), Phytoplankton (182), Lidar (175), Upwelling (93), Gulf of Mexico (88), Scattering (76), Absorption (71), Inherent Optical Properties (66), Image Processing (64), Ocean Color Remote Sensing (54), Surface Waves (52), Arabian Sea (51), Wetlands (51), Optical Properties (49) | 24 |
5 | Remote Sensing (4513), GIS (266), Coastal Waters (136), Hydrology (87), Mapping (84), Geomorphology (71), NDVI (66), Sentinel-2 (61), Snow (54), Bohai Sea (41), Land Cover (34) | 16 |
6 | Soil Moisture (361), Validation (222), Cyanobacteria (166), SMOS (153), Microwave Remote Sensing (148), Microwave Radiometry (134), Salinity (120), Passive Microwave Remote Sensing (106), Machine Learning (64), Antarctica (62), Soil Moisture Active Passive (47) | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Wang, J.; Xue, M.; Zhang, X. Characteristics and Trends of Ocean Remote Sensing Research from 1990 to 2020: A Bibliometric Network Analysis and Its Implications. J. Mar. Sci. Eng. 2022, 10, 373. https://doi.org/10.3390/jmse10030373
Wang Q, Wang J, Xue M, Zhang X. Characteristics and Trends of Ocean Remote Sensing Research from 1990 to 2020: A Bibliometric Network Analysis and Its Implications. Journal of Marine Science and Engineering. 2022; 10(3):373. https://doi.org/10.3390/jmse10030373
Chicago/Turabian StyleWang, Qiang, Jinping Wang, Mingmei Xue, and Xifeng Zhang. 2022. "Characteristics and Trends of Ocean Remote Sensing Research from 1990 to 2020: A Bibliometric Network Analysis and Its Implications" Journal of Marine Science and Engineering 10, no. 3: 373. https://doi.org/10.3390/jmse10030373
APA StyleWang, Q., Wang, J., Xue, M., & Zhang, X. (2022). Characteristics and Trends of Ocean Remote Sensing Research from 1990 to 2020: A Bibliometric Network Analysis and Its Implications. Journal of Marine Science and Engineering, 10(3), 373. https://doi.org/10.3390/jmse10030373