Actual and Model-Predicted Growth of Sponges—With a Bioenergetic Comparison to Other Filter-Feeders
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sponge Growth Model and Test of Exponents
3.2. Verification of Hypothesis: Growth Rates of Sponges in the Field
3.3. Evolutionary Adaptation
3.3.1. F/R-Ratio
3.3.2. Oxygen Uptake and Extraction Efficiency
3.3.3. Growth and Respiration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Time (d) | Day of Year | WW (g) | W (mg) | Wavg (mg) | µ (% d−1) |
---|---|---|---|---|---|
0 | 96 | 11.0 | 989 | ||
9 | 105 | 12.2 | 1094 | 1040 | |
14 | 110 | 11.9 | 1073 | 1083 | 0.45 |
22 | 118 | 11.7 | 1052 | 1062 | −0.39 |
29 | 125 | 12.7 | 1146 | 1098 | 0.41 |
36 | 132 | 13.6 | 1224 | 1184 | 1.08 |
50 | 146 | 15.0 | 1353 | 1287 | 1.19 |
71 | 167 | 15.6 | 1404 | 1378 | 0.49 |
78 | 174 | 17.0 | 1530 | 1466 | 0.29 |
83 | 179 | 18.6 | 1672 | 1599 | 1.25 |
90 | 186 | 18.7 | 1679 | 1675 | 0.93 |
97 | 193 | 19.5 | 1759 | 1719 | 0.36 |
104 | 200 | 20.0 | 1796 | 1777 | 0.48 |
118 | 214 | 21.8 | 1966 | 1879 | 0.79 |
125 | 221 | 23.1 | 2078 | 2021 | 0.52 |
Mean | 0.62 |
Time (d) | AFDW (g) | AFDWavg (g) | µ (% d−1) | T (°C) |
---|---|---|---|---|
14 | 99.8 | 1.8 | ||
45 | 115.8 | 107.5 | 0.480 | 3.0 |
71 | 123.2 | 119.5 | 0.236 | 4.7 |
98 | 147.9 | 135.0 | 0.664 | 7.5 |
134 | 241.0 | 188.8 | 1.365 | 13.8 |
Average | 0.69 | 7.26 |
6 m depth | |||
Day of 1984 | AFDW | AFDWavg | µ |
(d) | (g m−2) | (g m−2) | (% d−1) |
148 | 21.9 | ||
184 | 27.2 | 24.4 | 0.61 |
205 | 40.7 | 33.3 | 1.85 |
Average | 1.23 | ||
8 m depth | |||
119 | 3.5 | ||
147 | 6.9 | 4.95 | 2.41 |
183 | 16.0 | 10.54 | 2.34 |
204 | 22.5 | 18.99 | 1.58 |
Average | 2.11 | ||
10 m depth | |||
47 | 10.4 | 4.32 | 2.54 |
66 | 9.1 | 9.71 | 0.20 |
94 | 9.6 | 9.31 | |
148 | 16.6 | 12.59 | 1.03 |
183 | 18.2 | 17.35 | 0.27 |
204 | 24.5 | 21.13 | 1.41 |
Average | 1.09 |
Time | Length | Lavg | µL |
---|---|---|---|
(d) | (cm) | (cm) | (% d−1) |
46 | 6.9 | ||
59 | 7.8 | 7.32 | 0.86 |
74 | 8.4 | 8.07 | 0.51 |
87 | 9.3 | 8.83 | 0.78 |
104 | 10.5 | 9.89 | 0.75 |
113 | 11.1 | 10.81 | 0.58 |
129 | 12.7 | 11.86 | 0.84 |
Average | 0.72 |
References
- Larsen, P.S.; Riisgård, H.U. The Sponge Pump. J. Theor. Biol. 1994, 168, 53–63. [Google Scholar] [CrossRef]
- De Goeij, J.M.; van den Berg, H.; van Oostveen, M.M.; Epping, E.H.; Van Duyl, F.C. Major bulk dis-solved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 2008, 357, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Leys, S.P.; Yahel, G.; Reidenbach, M.A.; Tunnicliffe, V.; Shavit, U.; Reiswig, H.M. The Sponge Pump: The Role of Current Induced Flow in the Design of the Sponge Body Plan. PLoS ONE 2011, 6, e27787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riisgård, H.U.; Kumala, L.; Charitonidou, K. Using the F/R-ratio for an evaluation of the ability of the demosponge Halichondria panicea to nourish solely on phytoplankton versus free-living bacteria in the sea. Mar. Biol. Res. 2016, 12, 907–916. [Google Scholar] [CrossRef]
- Reiswig, H.M. In situ pumping activities of tropical Demospongiae. Mar. Biol. 1971, 9, 38–50. [Google Scholar] [CrossRef]
- Lüskow, F.; Riisgård, H.U.; Solovyeva, V.; Brewer, J.R. Seasonal changes in bacteria and phytoplankton biomass control the condition index of the demosponge Halichondria panicea in temperate Danish waters. Mar. Ecol. Prog. Ser. 2019, 608, 119–132. [Google Scholar] [CrossRef]
- Weissenfels, N. The filtration apparatus for food collection in freshwater sponges (Porifera, Spongillidae). Zoomorphology 1992, 112, 51–55. [Google Scholar] [CrossRef]
- Imsiecke, G. Ingestion, digestion, and egestion in Spongilla lacustris (Porifera, Spongillidae) after pulse feeding with Chlamydomonas reinhardtii (Volvocales). Zoomorphology 1993, 113, 233–244. [Google Scholar] [CrossRef]
- Osinga, R.; Tramper, J.; Wijffels, R.H. Cultivation of Marine Sponges. Mar. Biotechnol. 1999, 1, 509–532. [Google Scholar] [CrossRef]
- Bergquist, P.R. Sponges; University of California Press: Berkeley, CA, USA, 1978. [Google Scholar]
- Bagby, R.M. The fine structure of myocytes in the sponges Microciona prolifera (Ellis and So-lander) and Tedania ignis (Duchassaing and Michelotti). J. Morphol. 1966, 118, 167–181. [Google Scholar] [CrossRef]
- Elliott, G.R.D.; Leys, S.P. Coordinated contractions effectively expel water from aquiferous system of a freshwater sponge. J. Exp. Biol. 2007, 210, 3736–3748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellwanger, K.; Eich, A.; Nickel, M. GABA and glutamate specifically induce contractions in the sponge Tethya wilhelma. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 2007, 193, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C. Six major steps in animal evolution: Are we dervied sponge larvae? Evol. Dev. 2008, 10, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, C.B.; Møhlenberg, F.; Sten-Knudsen, O. Nature of relation between ventilation and oxygen consumption in filter feeders. Mar. Ecol. Prog. Ser. 1986, 29, 73–88. [Google Scholar] [CrossRef]
- Reiswig, H.M. Population dynamics of three Jamaican Demospongiae. Bull. Mar. Sci. 1973, 23, 191–226. [Google Scholar]
- Reiswig, H.M. Water transport, respiration and energetics of three tropical marine sponges. J. Exp. Mar. Biol. Ecol. 1974, 14, 231–249. [Google Scholar] [CrossRef]
- Pile, A.J.; Patterson, M.R.; Witman, J.D. In situ grazing on plankton < 10 μm by the boreal sponge Mycale lingua. Mar. Ecol. 1996, 141, 95–102. [Google Scholar]
- Ribes, M.; Coma, R.; Gili, J. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar. Ecol. Prog. Ser. 1999, 176, 179–190. [Google Scholar] [CrossRef]
- Morganti, T.; Ribes, M.; Yahel, G.; Coma, R. Size Is the Major Determinant of Pumping Rates in Marine Sponges. Front. Physiol. 2019, 10, 1474. [Google Scholar] [CrossRef] [Green Version]
- Morganti, T.M.; Ribes, M.; Moskovich, R.; Weisz, J.B.; Yahel, G.; Coma, R. In situ pumping rate of 20 marine demosponges is a function of osculum area. Front. Mar. Sci. 2021, 8, 583188. [Google Scholar] [CrossRef]
- Riisgård, H.U.; Lundgreen, K.; Larsen, P.S. Potential for production of ‘mini-mussels’ in Great Belt (Denmark) evaluated on basis of actual and modeled growth of young mussels Mytilus edulis. Aquac. Int. 2014, 22, 859–885. [Google Scholar] [CrossRef]
- R Development Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 2 March 2022).
- Thomassen, S.; Riisgård, H.U. Growth and energetics of the sponge Halichondria panicea. Mar. Ecol. Prog. Ser. 1995, 128, 239–246. [Google Scholar] [CrossRef]
- Larsen, P.S.; Riisgård, H.U. Pumping rate and size of demosponges—Towards an understanding using modeling. J. Mar. Sci. Eng. 2021, 9, 1308. [Google Scholar] [CrossRef]
- Southwell, M.W.; Weisz, J.B.; Martens, C.S.; Lindquist, N. In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol. Oceanogr. 2008, 53, 986–996. [Google Scholar] [CrossRef] [Green Version]
- Fiore, C.L.; Baker, D.M.; Lesser, M.P. Nitrogen biogeochemistry in the Carribbean sponge Xestospongia muta: A source or sink of dissolved inorganic nitrogen? PLoS ONE 2013, 8, e72961. [Google Scholar] [CrossRef] [Green Version]
- McMurray, S.; Blum, J.E.; Pawlik, J.R. Redwood of the reef: Growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Mar. Biol. 2008, 155, 159–171. [Google Scholar] [CrossRef]
- McMurray, S.E.; Pawlik, J.R.; Finelli, C.M. Trait-mediated ecosystem impacts: How morphology and size affect pumping rates of the Caribbean giant barrel sponge. Aquat. Biol. 2014, 23, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ludeman, D.A.; Reidenbach, M.A.; Leys, S.P. The energetic cost of filtration by demosponges and their behavioural response to ambient currents. J. Exp. Biol. 2017, 220, 995–1007. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.; Riisgård, H.U.; Larsen, P.S. Exhalant jet speed of single-osculum explants of the demosponge Halichondria panicea and basic properties of the sponge-pump. J. Exp. Mar. Biol. Ecol. 2019, 511, 82–90. [Google Scholar] [CrossRef]
- Dahihande, A.S.; Thakur, N.L. Temperature- and size-associated differences in the skeletal structures and osculum cross-sectional area influence the pumping rate of contractile sponge Cinachyrella cf. cavernosa. Mar. Ecol. 2019, 40, e12565. [Google Scholar] [CrossRef]
- Mills, D.B.; Ward, L.M.; Jones, C.; Sweeten, B.; Forth, M.; Treusch, A.H.; Canfield, D.E. Oxygen requirements of the earliest animals. Proc. Natl. Acad. Sci. USA 2014, 111, 4168–4172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, V.; Klumpp, D. Evidence for food-resource partitioning by kelp-bed filter feeders. Mar. Ecol. Prog. Ser. 1984, 16, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Barthel, D. On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. I. Substrate specificity, growth and reproduction. Mar. Ecol. Prog. Ser. 1986, 32, 291–298. [Google Scholar] [CrossRef]
- Barthel, D. On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. II. Biomass, production, energy budget and integration in environmental processes. Mar. Ecol. Prog. Ser. 1988, 43, 87–93. [Google Scholar] [CrossRef]
- Schiefenhövel, K.; Kunzmann, A. Sponge farming trials: Survival, attachment, and growth of two Indo-Pacific sponges, Neopetrosia sp. and Stylissa massa. J. Mar. Biol. 2012, 2012, 41736. [Google Scholar] [CrossRef] [Green Version]
- Koopmans, M.; Wijffels, R.H. Seasonal Growth Rate of the Sponge Haliclona oculata (Demospongiae: Haplosclerida). Mar. Biotechnol. 2008, 10, 502–510. [Google Scholar] [CrossRef]
- Frost, T.M.; Williamson, C.E. Determination of the effect of symbiotic algae on the growth of the freshwater sponge Spongilla lacustris. Ecology 1980, 61, 1361–1370. [Google Scholar] [CrossRef]
- Riisgård, H.U.; Larsen, P.S. Comparative ecophysiology of active zoobenthic filter feeding, essence of current knowledge. J. Sea Res. 2000, 44, 169–193. [Google Scholar] [CrossRef]
- Riisgård, H.U.; Larsen, P.S. Physiologically regulated valveclosure makes mussels long-term starvation survivors: Test of hypothesis. J. Molluscan Stud. 2015, 81, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Riisgård, H.U. Physiological Regulation of Valve-Opening Degree Enables Mussels Mytilus edulis to Overcome Starvation Periods by Reducing the Oxygen Uptake. Open J. Mar. Sci. 2016, 06, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Kealy, R.A.; Busk, T.; Goldstein, J.; Larsen, P.S.; Riisgård, H.U. Hydrodynamic characteristics of aquiferous modules in the demosponge Halichondria panicea. Mar. Biol. Res. 2019, 15, 531–540. [Google Scholar] [CrossRef]
- Goldstein, J.; Bisbo, N.; Funch, P.; Riisgård, H.U. Contraction-expansion and morphological changes of the aquiferous system in the demosponge Halichondria panicea. Front. Mar. Sci. 2020, 7, 113. [Google Scholar] [CrossRef]
- Kumala, L.; Larsen, M.; Glud, R.N.; Canfield, D.E. Spatial and temporal anoxia in single-osculum Halichondria panicea demosponge explants studied with planar optodes. Mar. Biol. 2021, 168, 1–13. [Google Scholar] [CrossRef]
- Riisgård, H.U. No foundation of a “3/4 power scaling law” for respiration in Biology. Ecol. Lett. 1998, 1, 71–73. [Google Scholar] [CrossRef]
- Jørgensen, C. Fluid mechanical aspects of suspension feeding. Mar. Ecol. Prog. Ser. 1983, 11, 89–103. [Google Scholar] [CrossRef]
- Hamburger, K.; Møhlenberg, F.; Randløv, A.; Riisgård, H.U. Size, oxygen consumption and growth in the mussel Mytilus edulis. Mar. Biol. 1983, 75, 303–306. [Google Scholar] [CrossRef]
- Petersen, J.; Riisgard, H. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser. 1992, 88, 9–17. [Google Scholar] [CrossRef]
- Frandsen, K.T.; Riisgård, H.U. Size dependent respiration and growth of jellyfish, Aurelia aurita. Sarsia 1997, 82, 307–312. [Google Scholar] [CrossRef]
- Riisgard, H. Suspension feeding in the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 1991, 70, 29–37. [Google Scholar] [CrossRef]
- Lüskow, F.; Kløve-Mogensen, K.; Tophøj, J.; Pedersen, L.H.; Riisgård, H.U.; Eriksen, N.T. Seasonality in lipid content of the demosponges Halichondria panicea and H. bowerbanki at two study sites in temperate Danish waters. Front. Mar. Sci. 2019, 6, 328. [Google Scholar] [CrossRef]
- Dahihande, A.S.; Thakur, N.L. Differences in the structural components influence the pumping capacity of marine sponges. Front. Mar. Sci. 2021, 8, 671362. [Google Scholar] [CrossRef]
- Riisgard, H.; Goldson, A. Minimal scaling of the lophophore filter-pump in ectoprocts (Bryozoa) excludes physiological regulation of filtration rate to nutritional needs. Test of hypothesis. Mar. Ecol. Prog. Ser. 1997, 156, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Hermansen, P.; Larsen, P.S.; Riisgård, H.U. Colony growth rate of encrusting bryozoans (Electra pilosa and Celleporella hyalina): Importance of algal concentration and water flow. J. Exp. Mar. Biol. Ecol. 2001, 263, 1–23. [Google Scholar] [CrossRef]
- Amui-Vedel, A.-M.; Hayward, P.J.; Porter, J.S. Zooid size and growth rate of the bryozoan Cryptosula pallasiana Moll in relation to temperature, in culture and in its natural environment. J. Exp. Mar. Biol. Ecol. 2007, 353, 1–12. [Google Scholar] [CrossRef]
- Key, M.M. Estimating colony age from colony size in encrusting cheilostomes. In Proceedings of the Bryozoan Studies 2019—Proceedings of the Eighteenth International Bryozoology Association Conference Liberec, Prague, Czech Republic, 16–21 June 2020. [Google Scholar]
- Riisgård, H.U.; Larsen, P.S. Bioenergetic model and specific growth rates of jellyfish Aurelia aurita. Mar. Ecol. Prog. Ser. 2022; in press. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riisgård, H.U.; Larsen, P.S. Actual and Model-Predicted Growth of Sponges—With a Bioenergetic Comparison to Other Filter-Feeders. J. Mar. Sci. Eng. 2022, 10, 607. https://doi.org/10.3390/jmse10050607
Riisgård HU, Larsen PS. Actual and Model-Predicted Growth of Sponges—With a Bioenergetic Comparison to Other Filter-Feeders. Journal of Marine Science and Engineering. 2022; 10(5):607. https://doi.org/10.3390/jmse10050607
Chicago/Turabian StyleRiisgård, Hans Ulrik, and Poul S. Larsen. 2022. "Actual and Model-Predicted Growth of Sponges—With a Bioenergetic Comparison to Other Filter-Feeders" Journal of Marine Science and Engineering 10, no. 5: 607. https://doi.org/10.3390/jmse10050607
APA StyleRiisgård, H. U., & Larsen, P. S. (2022). Actual and Model-Predicted Growth of Sponges—With a Bioenergetic Comparison to Other Filter-Feeders. Journal of Marine Science and Engineering, 10(5), 607. https://doi.org/10.3390/jmse10050607