Underwater Chatter for the Win: A First Assessment of Underwater Soundscapes in Two Bays along the Eastern Cape Coast of South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soundscape Measurements
2.2.1. Acoustic Data Collection
2.2.2. Identification of Sound Sources
2.2.3. Flow Noise Artefacts
2.2.4. Temporal Patterns
2.3. Sound Budgets
2.3.1. Power Spectral Density Percentile and Power Spectral Probability Density Plots
2.3.2. Wind Noise Model
2.3.3. Vessel Noise Model
Zone Features | Parameters | Categories | Source |
---|---|---|---|
Bathymetric | Depth [m] | <150 150–4000 >4000 | South African Navy Hydrographical Office (SANHO) |
Hydroacoustic | Temperature profile [°C] | Both available for four regions: Continental shelf bay Continental shelf offshore Continental slope Deep ocean | [93] |
Salinity profile [psu] | [94] | ||
Geoacoustic | Unconsolidated sediment | Medium to fine silt Coarse silt Fine sand Medium to fine sand Medium sand Fine pebbles Medium pebbles | Inside bay: Algoa Bay Sentinel Site for LTER of the South African Environmental Observation Network Outside bay: [95] |
Unconsolidated sediment thickness [m] | na | [96,97] | |
Consolidated sediment | Quartzite Sandstone | [98,99] |
2.3.4. Predicted Spatial Changes in Sound Budgets
3. Results
3.1. Soundscape Measurements
3.1.1. Sound Sources
Biophony
Geophony
Anthropophony
3.1.2. Flow Noise Artefacts
3.1.3. Temporal Patterns
3.2. Sound Budgets
3.2.1. Power Spectral Density Percentile and Power Spectral Probability Density Plots
3.2.2. Wind Noise Model
3.2.3. Vessel Noise Model
3.2.4. Predicting Spatial Changes in Sound Budgets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scarpelli, M.D.A.; Ribeiro, M.C.; Teixeira, F.Z.; Young, R.J.; Teixeira, C.P. Gaps in terrestrial soundscape research: It’s time to focus on tropical wildlife. Sci. Total Environ. 2020, 707, 135403. [Google Scholar] [CrossRef] [PubMed]
- Schoeman, R.P.; Erbe, C.; Pavan, G.; Righini, R.; Thomas, J.A. Analysis of soundscapes as an ecological tool. Volume 1: Methods. In Exploring Animal Behavior through Sound; Erbe, C., Thomas, J., Eds.; Springer Nature: Cham, Switzerland, 2022; 590p. [Google Scholar] [CrossRef]
- Farina, A.; Gage, S.H. (Eds.) Ecoacoustics: The Ecological Role of Sounds; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Mennitt, D.J.; Fristrup, K.M. Influential factors and spatiotemporal patterns of environmental sound levels in the contiguous United States. Noise Control Eng. J. 2016, 64, 342–353. [Google Scholar] [CrossRef]
- Duarte, C.M.; Chapuis, L.; Collin, S.P.; Costa, D.P.; Devassy, R.P.; Eguiluz, V.M.; Erbe, C.; Gordon, T.A.C.; Halpern, B.S.; Harding, H.R.; et al. The soundscape of the Anthropocene ocean. Science 2021, 371, eaba4658. [Google Scholar] [CrossRef] [PubMed]
- Dziak, R.P.; Haxel, J.H.; Matsumoto, H.; Lau, T.K.; Heimlich, S.; Nieukirk, S.; Mellinger, D.K.; Osse, J.; Meinig, C.; Delich, N.; et al. Ambient sound at Challenger Deep, Mariana Trench. Oceanography 2017, 30, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.E.; Stafford, K.M.; Melling, H.; Berchok, C.; Wiig, Ø.; Kovacs, K.M.; Lydersen, C.; Richter-Menge, J. Comparing marine mammal acoustic habitats in Atlantic and Pacific sectors of the High Arctic: Year-long records from Fram Strait and the Chukchi Plateau. Polar Biol. 2012, 35, 475–480. [Google Scholar] [CrossRef]
- Haver, S.M.; Klinck, H.; Nieukirk, S.L.; Matsumoto, H.; Dziak, R.P.; Miksis-Olds, J.L. The not-so-silent world: Measuring Arctic, Equatorial and Antarctic soundscapes in the Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2017, 122, 95–104. [Google Scholar] [CrossRef]
- Yun, S.; Lee, W.S.; Dziak, R.P.; Roche, L.; Matsumoto, H.; Lau, T.K.; Sremba, A.; Mellinger, D.K.; Haxel, J.H.; Kang, S.G.; et al. Quantifying soundscapes in the Ross Sea, Antarctica using long-term autonomous hydroacoustic monitoring systems. Front. Mar. Sci. 2021, 8, 703411. [Google Scholar] [CrossRef]
- Williams, R.; Wright, A.J.; Ashe, E.; Blight, L.K.; Bruintjes, R.; Canessa, R.; Clark, C.W.; Cullis-Suzuki, S.; Dakin, D.T.; Erbe, C.; et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean Coast. Manag. 2015, 115, 17–24. [Google Scholar] [CrossRef] [Green Version]
- European Union Directive 2008/56/EC of the European Parliament and of the Council. Official Journal of the European Union L 164; Publications Office of the European Union: Luxembourg, 2008; pp. 19–40. [Google Scholar]
- International Maritime Organization [IMO]. Guidelines for the Reduction of Underwater Noise from Commercial Shipping to Address Adverse Impacts on Aquatic Life; MEPC.1/Circ.833 Annex; International Maritime Organization [IMO]: London, UK, 2014. [Google Scholar]
- United Nations. Report on the Work of the United Nations Open-Ended Informal Consultative Process on Oceans and the Law of the Sea at Its Nineteenth Meeting; General Assembly A/73/124; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Popper, A.N.; Hawkins, A. The Effects of Noise on Aquatic Life II; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Popper, A.N.; Hawkins, A. The Effects of Noise on Aquatic Life; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Thomsen, F.; Erbe, C.; Hawkins, A.; Lepper, P.; Popper, A.N.; Scholik-Schlomer, A.; Sisneros, J. Introduction to the special issue on the effects of sound on aquatic life. J. Acoust. Soc. Am. 2020, 148, 934–938. [Google Scholar] [CrossRef]
- Fobes, J.L.; Smock, C.C. Sensory capacities of marine mammals. Psychol. Bull. 1981, 89, 288–307. [Google Scholar] [CrossRef]
- Popper, A.N.; Fay, R.R. Sound detection and processing by fish: Critical review and major research questions. Brain Behav. Evol. 1993, 41, 14–38. [Google Scholar] [CrossRef] [PubMed]
- Putland, R.L.; Montgomery, J.C.; Radford, C.A. Ecology of fish hearing. J. Fish Biol. 2019, 95, 39–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myrberg, A.A., Jr. Underwater sound: Its relevance to behavioral functions among fishes and marine mammals. Mar. Freshw. Behav. Physiol. 1997, 29, 3–21. [Google Scholar] [CrossRef]
- Levin, S.A. The problem of pattern and scale in ecology. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Chave, J. The problem of pattern and scale in ecology: What have we learned in 20 years? Ecol. Lett. 2013, 16, 4–16. [Google Scholar] [CrossRef]
- Haver, S.M.; Fournet, M.E.H.; Dziak, R.P.; Gabriele, C.; Gedamke, J.; Hatch, L.T.; Haxel, J.; Heppell, S.A.; McKenna, M.F.; Mellinger, D.K.; et al. Comparing the underwater soundscapes of four U.S. National Parks and marine sanctuaries. Front. Mar. Sci. 2019, 6, 500. [Google Scholar] [CrossRef] [Green Version]
- McKenna, M.F.; Baumann-Pickering, S.; Kok, A.C.M.; Oestreich, W.K.; Adams, J.D.; Barkowski, J.; Fristrup, K.M.; Goldbogen, J.A.; Joseph, J.; Kim, E.B.; et al. Advancing the interpretation of shallow water marine soundscapes. Front. Mar. Sci. 2021, 8, 719258. [Google Scholar] [CrossRef]
- Wenz, G.M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 1962, 34, 1936–1956. [Google Scholar] [CrossRef]
- Nystuen, J.A. Rainfall measurements using underwater ambient noise. J. Acoust. Soc. Am. 1986, 79, 972–982. [Google Scholar] [CrossRef]
- Medwin, H.; Nystuen, J.A.; Jacobus, P.W.; Ostwald, L.H.; Snyder, D.E. The anatomy of underwater rain noise. J. Acoust. Soc. Am. 1992, 92, 1613–1623. [Google Scholar] [CrossRef]
- Strasberg, M. Nonacoustic noise interference in measurements of infrasonic ambient noise. J. Acoust. Soc. Am. 1979, 66, 1487–1493. [Google Scholar] [CrossRef]
- Miksis-Olds, J.L.; Nichols, S.M. Is low frequency ocean sound increasing globally? J. Acoust. Soc. Am. 2016, 139, 501–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrew, R.K.; Howe, B.M.; Mercer, J.A.; Dzieciuch, M.A. Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoust. Res. Lett. Online 2002, 3, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Andrew, R.K.; Howe, B.M.; Mercer, J.A. Long-term trends in ship traffic noise for four sites off the north American west coast. J. Acoust. Soc. Am. 2011, 129, 642–651. [Google Scholar] [CrossRef] [Green Version]
- Chapman, N.R.; Price, A. Low frequency deep ocean ambient noise trend in the northeast Pacific Ocean. J. Acoust. Soc. Am. 2011, 129, EL161–EL165. [Google Scholar] [CrossRef]
- Frisk, G.V. Noiseonomics: The relationship between ambient noise levels in the sea and global economic trends. Sci. Rep. 2012, 2, 437. [Google Scholar] [CrossRef] [Green Version]
- Miksis-Olds, J.L.; Bradley, D.L.; Maggie Niu, X. Decadal trends in Indian Ocean ambient sound. J. Acoust. Soc. Am. 2013, 134, 3464–3475. [Google Scholar] [CrossRef]
- Hermannsen, L.; Beedholm, K.; Tougaard, J.; Madsen, P.T. High frequency components of ship noise in shallow water with a discussion of implications for harbor porpoises (Phocoena phocoena). J. Acoust. Soc. Am. 2014, 136, 1640–1653. [Google Scholar] [CrossRef] [Green Version]
- Tidau, S.; Briffa, M. Review on behavioral impacts of aquatic noise on crustaceans. Proc. Meet. Acoust. 2016, 27, 010028. [Google Scholar] [CrossRef] [Green Version]
- Erbe, C.; Marley, S.A.; Schoeman, R.P.; Smith, J.N.; Trigg, L.E.; Embling, C.B. The effects of ship noise on marine mammals—A review. Front. Mar. Sci. 2019, 6, 606. [Google Scholar] [CrossRef] [Green Version]
- de Jong, K.; Forland, T.N.; Amorim, M.C.P.; Rieucau, G.; Slabbekoorn, H.; Sivle, L.D. Predicting the effects of anthropogenic noise on fish reproduction. Rev. Fish Biol. Fish. 2020, 30, 245–268. [Google Scholar] [CrossRef] [Green Version]
- Erbe, C.; Schoeman, R.P.; Peel, D.; Smith, J.N. It often howls more than it chugs: Wind versus ship noise under water in Australia’s maritime regions. J. Mar. Sci. Eng. 2021, 9, 472. [Google Scholar] [CrossRef]
- Erbe, C.; McCauley, R.; Gavrilov, A.; Madhusudhana, S.; Verma, A. The underwater soundscape around Australia. In Proceedings of the Acoustics 2016, Brisbane, Australia, 9–11 November 2016; pp. 1–10. [Google Scholar]
- Marley, S.A.; Salgado Kent, C.P.; Erbe, C.; Thiele, D. A tale of two soundscapes: Comparing the acoustic characteristics of urban versus pristine coastal dolphin habitats in Western Australia. Acoust. Aust. 2017, 45, 159–178. [Google Scholar] [CrossRef]
- McCordic, J.A.; DeAngelis, A.I.; Kline, L.R.; McBride, C.; Rodgers, G.G.; Rowell, T.J.; Smith, J.; Stanley, J.A.; Stokoe, A.; Van Parijs, S.M. Biological sound sources drive soundscape characteristics of two Australian marine parks. Front. Mar. Sci. 2021, 8, 669412. [Google Scholar] [CrossRef]
- Tournadre, J. Anthropogenic pressure on the open ocean: The growth of ship traffic revealed by altimeter data analysis. Geophys. Res. Lett. 2014, 41, 7924–7932. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Xu, Y.; Wang, Q.; Wang, F.; Xu, Z. Mapping global shipping density from AIS data. J. Navig. 2017, 70, 67–81. [Google Scholar] [CrossRef]
- Majiedt, P.; Holness, S.; Sink, K.; Reed, J.; Franken, M.; van der Bank, M.; Harris, L.; Adams, L.; Perschke, M.; Miza, S.; et al. Chapter 4: Pressures on Marine Biodiversity. In South African National Biodiversity Assessment 2018 Technical Report Volume 4: Marine Realm; Sink, K., van der Bank, M., Majiedt, P., Harris, L., Atkinson, L., Kirkman, S., Karenyi, N., Eds.; South African National Biodiversity Institute: Pretoria, South Africa, 2019; pp. 110–204. [Google Scholar]
- UNCTAD Maritime Profile: South Africa. Available online: https://unctadstat.unctad.org/CountryProfile/MaritimeProfile/en-GB/710/index.html (accessed on 20 May 2022).
- Potgieter, T. Oceans economy, blue economy, and security: Notes on the South African potential and developments. J. Indian Ocean Reg. 2018, 14, 49–70. [Google Scholar] [CrossRef]
- Watkins, W.A.; Schevill, W.E.; Best, P.B. Underwater sounds of Cephalorhynchus heavisidii (Mammalia: Cetacea). J. Mammology 1977, 58, 316–320. [Google Scholar] [CrossRef]
- Gridley, T.; Berggren, P.; Cockcroft, V.G.; Janik, V.M. Whistle vocalizations of Indo-Pacific bottlenose dolphins (Tursiops aduncus) inhabiting the south-west Indian Ocean. J. Acoust. Soc. Am. 2012, 132, 4032–4040. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.J.; Gridley, T.; Elwen, S.H.; Jensen, F.H. Heavisides dolphins (Cephalorhynchus heavisidii) relax acoustic crypsis to increase communication range. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181178. [Google Scholar] [CrossRef] [Green Version]
- Ross-Marsh, E.C.; Elwen, S.H.; Prinsloo, A.S.; James, B.S.; Gridley, T. Singing in South Africa: Monitoring the occurrence of humpback whale (Megaptera novaeangliae) song near the Western Cape. Bioacoustics 2021, 30, 163–179. [Google Scholar] [CrossRef]
- Hofmeyr, G.J.G.; du Toit, M.; Kirkman, S.P. Early post-release survival of stranded Cape fur seal pups at Black Rocks, Algoa Bay, South Africa. Afr. J. Mar. Sci. 2011, 33, 463–468. [Google Scholar] [CrossRef]
- Koper, R.P.; Karczmarski, L.; du Preez, D.; Plön, S. Sixteen years later: Occurrence, group size, and habitat use of humpback dolphins (Sousa plumbea) in Algoa Bay, South Africa. Mar. Mammal Sci. 2016, 32, 490–507. [Google Scholar] [CrossRef]
- Melly, B.L.; McGregor, G.; Hofmeyr, G.J.G.; Plön, S. Spatio-temporal distribution and habitat preferences of cetaceans in Algoa Bay, South Africa. J. Mar. Biol. Assoc. UK 2018, 98, 1065–1079. [Google Scholar] [CrossRef]
- Bouveroux, T.N.; Caputo, M.; Froneman, P.W.; Plön, S. Largest reported groups for the Indo-Pacific bottlenose dolphin (Tursiops aduncus) found in Algoa Bay, South Africa: Trends and potential drivers. Mar. Mammal Sci. 2018, 34, 645–665. [Google Scholar] [CrossRef]
- Dicken, M.L.; Smale, M.J.; Booth, A.J. White sharks Carcharodon carcharias at Bird Island, Algoa Bay, South Africa. Afr. J. Mar. Sci. 2013, 35, 175–182. [Google Scholar] [CrossRef]
- Smale, M.J. Occurrence and feeding of three shark species, Carcharhinus brachyurus, C. Obscurus and Sphyrna zygaena, on the Eastern Cape coast of South Africa. S. Afr. J. Mar. Sci. 1991, 11, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Beckley, L.; Buxton, C. Underwater observations of reef fish in and around Algoa Bay, South Africa. Trans. R. Soc. S. Afr. 1989, 47, 29–38. [Google Scholar] [CrossRef]
- Pecquerie, L.; Drapeau, L.; Fréon, P.; Coetzee, J.C.; Leslie, R.W.; Griffiths, M.H. Distribution patterns of key fish species of the southern Benguela ecosystem: An approach combining fishery-dependent and fishery-independent data. Afr. J. Mar. Sci. 2004, 26, 115–139. [Google Scholar] [CrossRef]
- Smale, M.J. The feeding habits of six pelagic and predatory teleosts in Eastern Cape coastal waters (South Africa). J. Zool. 1986, 1, 357–409. [Google Scholar] [CrossRef]
- Sauer, W.H.H.; Smale, M.J.; Lipinski, M.R. The location of spawning grounds, spawning and schooling behaviour of the squid Loligo vulgaris reynaudii (Cephalopoda: Myopsida) off the Eastern Cape coast, South Africa. Mar. Biol. 1992, 114, 97–107. [Google Scholar] [CrossRef]
- Lipiński, M.R.; van der Vyver, J.S.F.; Shaw, P.; Sauer, W.H.H. Life cycle of chokka-squid Loligo reynaudii in South African waters. Afr. J. Mar. Sci. 2016, 38, 589–593. [Google Scholar] [CrossRef] [Green Version]
- Crawford, R.J.M.; Whittington, P.A.; Martin, A.P.; Tree, A.J.; Makhado, A.B. Population trends of seabirds breeding in South Africa’s Eastern Cape and the possible influence of anthropogenic and environmental change. Mar. Ornithol. 2009, 37, 159–174. [Google Scholar]
- Crawford, R.J.M.; Makhado, A.B.; Whittington, P.A.; Randall, R.M.; Oosthuizen, W.H.; Waller, L.J. A changing distribution of seabirds in South Africa—The possible impact of climate and its consequences. Front. Ecol. Evol. 2015, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- DEFF [Department of Environment Forestry and Fisheries]. Status of the South African Marine Fisheries Resources 2020; Department of Environment, Forestry, and Fisheries (DEFF): Cape Town, South Africa, 2020.
- TNPA [Transnet National Ports Authority]. National Ports Plan 2019 Updated; Transnet National Ports Authority: Braamfontein, South Africa, 2019. [Google Scholar]
- Goschen, W.S.; Schumann, E.H. The Physical Oceanographic Processes of Algoa Bay, with Emphasis on the Western Coastal Region; South African Environmental Observation Network: Port Elizabeth, South Africa, 2011. [Google Scholar]
- Thomisch, K.; Boebel, O.; Zitterbart, D.P.; Samaran, F.; Van Parijs, S.; Van Opzeeland, I. Effects of subsampling of passive acoustic recordings on acoustic metrics. J. Acoust. Soc. Am. 2015, 138, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Erbe, C.; Verma, A.; McCauley, R.; Gavrilov, A.; Parnum, I. The marine soundscape of the Perth Canyon. Prog. Oceanogr. 2015, 137, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.T.; Dunsmuir, T.M. Dangers and uses of cross-correlation in analyzing time series in perception, performance, movement, and neuroscience: The importance of constructing transfer function autoregressive models. Behav. Res. 2016, 48, 783–802. [Google Scholar] [CrossRef] [Green Version]
- De’Ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- R Core Team, R. A Language and Environmentt for Statistical Computing 2021; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Thieurmel, B.; Elmarhraoui, A. R Package, Version 0.5.0, Suncalc: Compute Sun Position, Sunlight Phases, Moon Position, and Lunar Phase; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Therneau, T.; Atkinson, B. R Package, Version 4.1-15, Rpart: Recursive Partitioning and Regression Trees; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Merchant, N.D.; Barton, T.R.; Thompson, P.M.; Pirotta, E.; Dakin, D.T.; Dorocicz, J. Spectral probability density as a tool for ambient noise analysis. J. Acoust. Soc. Am. 2013, 133, EL262–EL267. [Google Scholar] [CrossRef] [Green Version]
- Erbe, C.; MacGillivray, A.; Williams, R. Mapping cumulative noise from shipping to inform marine spatial planning. J. Acoust. Soc. Am. 2012, 132, EL423–EL428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervaise, C.; Aulanier, F.; Simard, Y.; Roy, N. Mapping probability of shipping sound exposure level. J. Acoust. Soc. Am. 2015, 137, EL429–EL435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sertlek, H.Ö.; Slabbekoorn, H.; ten Cate, C.; Ainslie, M.A. Source specific sound mapping: Spatial, temporal and spectral distribution of sound in the Dutch North Sea. Environ. Pollut. 2019, 247, 1143–1157. [Google Scholar] [CrossRef] [PubMed]
- Farcas, A.; Powell, C.F.; Brookes, K.L.; Merchant, N.D. Validated shipping noise maps of the northeast Atlantic. Sci. Total Environ. 2020, 735, 139509. [Google Scholar] [CrossRef] [PubMed]
- Breeding, J.E.; Bradley, M.; Walrod, M.H.; McBride, W. Research Ambient Noise DIrectionality (RANDI) 3.1 Physics Description; Naval Research Laboratory: Stennis Space Centre, MS, USA, 1996. [Google Scholar]
- Mathai, A.M.; Moschopoulos, P.; Pederzoli, G. Random points associated with rectangles. Rend. del Circ. Mat. di Palermo 1999, 48, 163–190. [Google Scholar] [CrossRef]
- Vesanto, J.; Himberg, J.; Alhoniemi, E.; Parhankangas, J. SOM Toolbox for MATLAB 5. Report A57; Helsinki University of Technology: Helsinki, Finland, 2000. [Google Scholar]
- Duncan, A.J.; Maggi, A.L. A consistent, user friendly interface for running a variety of underwater acoustic propagation codes. In Proceedings of the Acoustics 2006, Christchurch, New Zealand, 20–22 November 2006; pp. 471–477. [Google Scholar]
- Mackenzie, K.V. Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Am. 1981, 70, 807–812. [Google Scholar] [CrossRef]
- UNESCO. Tenth Report of the Joint Panel on Oceanographic Tables and Standards; UNESCO: Sidney, BC, Canada, 1981; Volume 36. [Google Scholar]
- Hamilton, E.L. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am. 1980, 68, 1313–1340. [Google Scholar] [CrossRef]
- Hamilton, E.L. Sound velocity-density relations in sea-floor sediments and rocks. J. Acoust. Soc. Am. 1978, 63, 366–377. [Google Scholar] [CrossRef]
- Hamilton, E.L. Shear-wave velocity versus depth in marine sediments: A review. Geophysics 1976, 41, 985–996. [Google Scholar] [CrossRef]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Rathje, E.M.; Cichowicz, A.; Birch, D. Seismic Site Characterization for the Thyspunt Nuclear Siting Project. Report Number 2012-0136 Rev. 1; Council for Geoscience: Pretoria, South Africa, 2012. [Google Scholar]
- Koessler, M.W. An equivalent fluid representation of a layered elastic seafloor for acoustic propagation modelling. In Proceedings of the Acoustics 2017, Perth, Australia, 19–22 November 2017; pp. 1–7. [Google Scholar]
- Locarnini, R.A.; Mishonov, A.V.; Baranova, O.K.; Boyer, T.P.; Zweng, M.M.; Garcia, H.E.; Reagan, J.R.; Seidov, D.; Weathers, K.W.; Paver, C.R.; et al. World Ocean Atlas 2018, Volume 1: Temperature; Mishonov, A., Ed.; NOAA Atlas NESDIS 81; National Oceanic and Atmospheric Administration: Silverspring, MD, USA, 2019.
- Zweng, M.M.; Reagan, J.R.; Seidov, D.; Boyer, T.P.; Locarnini, R.A.; Garcia, H.E.; Mishonov, A.V.; Baranova, O.K.; Weathers, K.W.; Paver, C.R.; et al. World Ocean Atlas 2018, Volume 2: Salinity; Mishonov, A., Ed.; NOAA Atlas NESDIS 82; National Oceanic and Atmospheric Administration: Silverspring, MD, USA, 2019.
- Wilkinson, S.; Japp, D. Description and Evaluation of Hake-Directed Trawling Intensity on Benthic Habitat in South Africa; Fisheries and Oceanographic Support Services CC: Cape Town, South Africa, 2005. [Google Scholar]
- Birch, G.F. Nearshore quaternary sediment off the south coast of South Africa (Cape Town to Port Elizabeth). Geol. Surv. S. Afr. Bull. 1980, 67, 20p. [Google Scholar]
- Bremner, J.M.; du Plessis, A. Basement morphology and unconsolidated sediment in Algoa Bay. In Joint Geological Survey/University of Cape Town Marine Geoscience Unit. Technical Report No. 13: Progress Reports for the Years 1981–1982; Marine Geoscience Group, University of Cape Town: Cape Town, South Africa, 1982; pp. 28–36. [Google Scholar]
- McMillan, I.K.; Brink, G.J.; Broad, D.S.; Maier, J.J. Late Mesozoic sedimentary basins off the south coast of South Africa. In African Basins. Sedimentary Basins of the World 3; Selley, R.C., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1997; pp. 319–376. [Google Scholar]
- Caku, N.; Gwavava, O.; Liu, K.; Baiyegunhi, C. An integration of magnetic, gravity and seismic data in evaluating the Algoa basin in the Eastern Cape province of South Africa for stratigraphic and structural geodynamics. Pure Appl. Geophys. 2020, 177, 4177–4205. [Google Scholar] [CrossRef]
- Iversen, R.T.S.; Perkins, P.J.; Dionne, R.D. An indication of underwater sound production by squid. Nature 1963, 199, 250–251. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, C.J. Biological studies on the chokker squid loligo vulgaris reynaudii (cephalopoda; myopsida) on spawning grounds off the south-east coast of South Africa. S. Afr. J. Mar. Sci. 1990, 9, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.J. Chokka squid (Loligo vulgaris reynaudii) abundance linked to changes in South Africa’s Agulhas Bank ecosystem during spawning and the early life cycle. ICES J. Mar. Sci. 2005, 62, 33–55. [Google Scholar] [CrossRef]
- Downey, N.J.; Roberts, M.J.; Baird, D. An investigation of the spawning behaviour of the chokka squid Loligo reynaudii and the potential effects of temperature using acoustic telemetry. ICES J. Mar. Sci. 2010, 67, 231–243. [Google Scholar] [CrossRef]
- Dunlop, R.A.; Cato, D.H.; Noad, M.J. Non-song acoustic communication in migrating humpback whales (Megaptera novaeangliae). Mar. Mammal Sci. 2008, 24, 613–629. [Google Scholar] [CrossRef]
- Cummings, W.C.; Thompson, P.O.; Fish, J.F. Behavior of southern right whales: R/V Hero cruise 72-3. Antarct. J. US 1974, 9, 33–38. [Google Scholar]
- Oleson, E.M.; Barlow, J.; Gordon, J.; Rankin, S.; Hildebrand, J.A. Low frequency calls of Bryde’s whales. Mar. Mammal Sci. 2003, 19, 407–419. [Google Scholar] [CrossRef]
- Schumann, E.H.; Martin, J.A. Climatological aspects of the coastal wind field at Cape Town, Port Elizabeth and Durban. S. Afr. Geogr. J. 1991, 73, 48–51. [Google Scholar] [CrossRef]
- Wright, M.A.; Grab, S.W. Wind speed characteristics and implications for wind power generation: Cape regions, South Africa. S. Afr. J. Sci. 2017, 113. [Google Scholar] [CrossRef] [Green Version]
- Putland, R.L.; Constantine, R.; Radford, C.A. Exploring spatial and temporal trends in the soundscape of an ecologically significant embayment. Sci. Rep. 2017, 7, 5713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radford, C.A.; Jeffs, A.G.; Tindle, C.T.; Montgomery, J.C. Temporal patterns in ambient noise of biological origin from a shallow water temperate reef. Oecologia 2008, 156, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Siddagangaiah, S.; Chen, C.F.; Hu, W.C.; Danovaro, R.; Pieretti, N. Silent winters and rock-and-roll summers: The long-term effects of changing oceans on marine fish vocalizations. Ecol. Indic. 2021, 125, 107456. [Google Scholar] [CrossRef]
- Parsons, M.J.G.; Salgado-Kent, C.P.; Marley, S.A.; Gavrilov, A.N.; McCauley, R.D. Characterizing diversity and variation in fish choruses in Darwin Harbour. ICES J. Mar. Sci. 2016, 73, 2058–2074. [Google Scholar] [CrossRef] [Green Version]
- Staaterman, E.; Paris, C.B.; DeFerrari, H.A.; Mann, D.A.; Rice, A.N.; D’Alessandro, E.K. Celestial patterns in marine soundscapes. Mar. Ecol. Prog. Ser. 2014, 508, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Pichegru, L.; Grémillet, D.; Crawford, R.J.M.; Ryan, P.G. Marine no-take zone rapidly benefits endangered penguin. Biol. Lett. 2010, 6, 498–501. [Google Scholar] [CrossRef] [Green Version]
- Van Eeden, R.; Reid, T.; Ryan, P.G.; Pichegru, L. Fine-scale foraging cues for African penguins in a highly variable marine environment. Mar. Ecol. Prog. Ser. 2016, 543, 257–271. [Google Scholar] [CrossRef] [Green Version]
- MacGillivray, A.; de Jong, C. A reference spectrum model for estimating source levels of marine shipping based on Automated Identification System data. J. Mar. Sci. Eng. 2021, 9, 369. [Google Scholar] [CrossRef]
- Jiang, P.; Lin, J.; Sun, J.; Yi, X.; Shan, Y. Source spectrum model for merchant ship radiated noise in the Yellow Sea of China. Ocean Eng. 2020, 216, 107607. [Google Scholar] [CrossRef]
- Leaper, R. The role of slower vessel speeds in reducing greenhouse gas emissions, underwater noise and collision risk to whales. Front. Mar. Sci. 2019, 6, 505. [Google Scholar] [CrossRef] [Green Version]
- MacGillivray, A.O.; Li, Z.; Hannay, D.E.; Trounce, K.B.; Robinson, O.M. Slowing deep-sea commercial vessels reduces underwater radiated noise. J. Acoust. Soc. Am. 2019, 146, 340–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ZoBell, V.M.; Frasier, K.E.; Morten, J.A.; Hastings, S.P.; Peavey Reeves, L.E.; Wiggins, S.M.; Hildebrand, J.A. Underwater noise mitigation in the Santa Barbara Channel through incentive-based vessel speed reduction. Sci. Rep. 2021, 11, 18391. [Google Scholar] [CrossRef] [PubMed]
- Chion, C.; Lagrois, D.; Dupras, J.; Turgeon, S.; McQuinn, I.H.; Michaud, R.; Ménard, N.; Parrott, L. Underwater acoustic impacts of shipping management measures: Results from a social-ecological model of boat and whale movements in the St. Lawrence Estuary (Canada). Ecol. Modell. 2017, 354, 72–87. [Google Scholar] [CrossRef]
- Duncan, A.J.; Gavrilov, A.; Fan, L. Acoustic propagation over limestone seabeds. In Proceedings of the Acoustics 2009, Adelaide, Australia, 23–25 November 2009; pp. 291–296. [Google Scholar]
- Cope, S.; Hines, E.; Bland, R.; Davis, J.D.; Tougher, B.; Zetterlind, V. Multi-sensor integration for an assessment of underwater radiated noise from common vessels in San Francisco Bay. J. Acoust. Soc. Am. 2021, 149, 2451–2464. [Google Scholar] [CrossRef] [PubMed]
- Cato, D.H. Ambient sea noise in Australian waters. In Proceedings of the International Congress on Sound and Vibration, Adelaide, Australia, 15–18 December 1997; pp. 1–5. [Google Scholar]
- Cato, D.H. Surface generated underwater noise in open and enclosed waters. In Proceedings of the Acoustics 2019, Cape Schanck, Victoria, Australia, 10–13 November 2019; pp. 1–7. [Google Scholar]
- Radford, C.A.; Ghazali, S.; Jeffs, A.G.; Montgomery, J.C. Vocalisations of the bigeye Pempheris adspersa: Characteristics, source level and active space. J. Exp. Biol. 2015, 218, 940–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raick, X.; Di Iorio, L.; Gervaise, C.; Lossent, J.; Lecchini, D.; Parmentier, É. From the reef to the ocean: Revealing the acoustic range of the biophony of a coral reef (Moorea Island, French Polynesia). J. Mar. Sci. Eng. 2021, 9, 420. [Google Scholar] [CrossRef]
- Mercado, E.; Frazer, L.N. Environmental constraints on sound transmission by humpback whales. J. Acoust. Soc. Am. 1999, 106, 3004–3016. [Google Scholar] [CrossRef] [PubMed]
- Erbe, C.; Williams, R.; Sandilands, D.; Ashe, E. Identifying modeled ship noise hotspots for marine mammals of Canada’s Pacific region. PLoS ONE 2014, 9, e89820. [Google Scholar] [CrossRef]
- Williams, R.; Erbe, C.; Ashe, E.; Clark, C.W. Quiet(er) marine protected areas. Mar. Pollut. Bull. 2015, 100, 154–161. [Google Scholar] [CrossRef]
Recording | Start Date | End Date | <1 Day [h] | Short Multi-Day | Long Multi-Day | Predictor Variables (Importance) | R2 |
---|---|---|---|---|---|---|---|
SF | Month: 0.75 Diurnal: 0.19 Lunar: 0.05 Wind: 0.01 | 0.23 | |||||
Set 1 | 3 April 2015 | 5 August 2015 | 12, 24 | ~4.5 | ~15, ~20.5 | ||
Set 2 | 25 September 2015 | 4 February 2016 | 6, 8, 12, 24 | ~37 | |||
Set 3 | 15 May 2016 | 25 August 2016 | 12, 24 | ~4.5 | ~15, ~20.5 | ||
Set 4 | 21 September 2016 | 14 January 2017 | 6, 8, 12, 24 | ~15 | |||
Set 5 | 31 January 2017 | 5 June 2017 | 12, 24 | ~3.4 | ~20.5 | ||
Set 6 | 7 July 2017 | 26 October 2017 | 12, 24 | ~3.4 | ~18, ~27 | ||
Set 7 | 17 November 2017 | 28 February 2018 | 6, 8, 12, 24 | ~11.5, ~23 | |||
AB1 | Month: 0.54 Diurnal: 0.42 Lunar: 0.01 Wind: 0.03 Tidal: 0.01 | 0.40 | |||||
Set1 | 10 December 2015 | 8 April 2016 | 8, 12, 24 | ||||
Set2 | 14 April 2016 | 28 August 2016 | 8, 12, 24 | ||||
Set3 | 22 February 2017 | 14 June 2017 | 8, 12, 24 | ~9.5 | |||
Set4 | 14 June 2017 | 4 September 2017 | 12, 24 | ~5.5 | ~9.5 | ||
Set5 | 21 October 2017 | 5 February 2018 | 6, 8, 12, 24 | ||||
AB2a | Month: 0.52 Diurnal: 0.46 Wind: 0.02 | 0.43 | |||||
Set1 | 8 September 2016 | 23 January 2017 | 6, 8, 12, 24 | ||||
Set2 | 23 January 2017 | 15 May 2017 | 8, 12, 24 | ~9.5 | |||
Set3 | 14 Jun 2017 | 21 October 2017 | 12, 24 | ~5.5 | |||
Set4 | 21 October 2017 | 13 March 2018 | 8, 12, 24 | ||||
AB2b | Month: 0.86 Diurnal: 0.12 Lunar: 0.01 Wind: 0.01 | 0.50 | |||||
Set1 | 27 February 2015 | 10 June 2015 | 12, 24 | ~6.2 | ~14.2 | ||
Set2 | 30 June 2015 | 4 November 2015 | 8, 12, 24 | ||||
Set3 | 30 November 2015 | 22 December 2015 | 12, 24 |
Site | Data Set | Annual SPL Measured | Annual SPL Modelled | Annual SPL Difference | April-June SPL Measured | April-June SPL Modelled * | April-June SPL Difference | |||
---|---|---|---|---|---|---|---|---|---|---|
[dB re 1 μPa2] | [dB re 1 μPa2] | [dB] | [dB re 1 μPa2] | [dB re 1 μPa2] | [dB] | |||||
Vessel | Wind | Vessel & Wind | Measured-Modelled | Wind | Vessel & Wind | Measured-Modelled | ||||
All Classes (Class1|Class2|Class3 Class4|Class5|Class6) | ||||||||||
SF | 2015–2016 | 112 | All classes: | 98 | 102 | 10 | 101 | 98 | 102 | −1 |
99 | ||||||||||
(47|62|70 | ||||||||||
83|95|97) | ||||||||||
AB1 | 2015–2016 | 106 | All classes: | 98 | 101 | 5 | 101 | 98 | 101 | 0 |
98 | ||||||||||
(24|45|58 | ||||||||||
67|92|97) | ||||||||||
AB2a | 2017 | 114 | All classes: | 99 | 100 | 14 | 108 | 98 | 99 | 9 |
94 | ||||||||||
(38|44|47 | ||||||||||
65|89|92) | ||||||||||
AB2b | 2015 | 109 | All classes: | 99 | 100 | 9 | 101 | 99 | 100 | 1 |
94 | ||||||||||
(29|46|50 | ||||||||||
78|88|92) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoeman, R.P.; Erbe, C.; Plön, S. Underwater Chatter for the Win: A First Assessment of Underwater Soundscapes in Two Bays along the Eastern Cape Coast of South Africa. J. Mar. Sci. Eng. 2022, 10, 746. https://doi.org/10.3390/jmse10060746
Schoeman RP, Erbe C, Plön S. Underwater Chatter for the Win: A First Assessment of Underwater Soundscapes in Two Bays along the Eastern Cape Coast of South Africa. Journal of Marine Science and Engineering. 2022; 10(6):746. https://doi.org/10.3390/jmse10060746
Chicago/Turabian StyleSchoeman, Renée P., Christine Erbe, and Stephanie Plön. 2022. "Underwater Chatter for the Win: A First Assessment of Underwater Soundscapes in Two Bays along the Eastern Cape Coast of South Africa" Journal of Marine Science and Engineering 10, no. 6: 746. https://doi.org/10.3390/jmse10060746
APA StyleSchoeman, R. P., Erbe, C., & Plön, S. (2022). Underwater Chatter for the Win: A First Assessment of Underwater Soundscapes in Two Bays along the Eastern Cape Coast of South Africa. Journal of Marine Science and Engineering, 10(6), 746. https://doi.org/10.3390/jmse10060746