Concentration, Spatial-Temporal Distribution, and Bioavailability of Dissolved Reactive Iron in Northern Coastal China Seawater
Abstract
:1. Introduction
2. Study Area and Sampling
3. Materials and Methods
4. Results and Discussion
4.1. Hydrographic Properties
4.2. Comparison of TdFe in Sishili Bay with Other Coastal Areas
Location | Sampling Time | Dissolved Iron (Unit: nM) | Method | Reference |
---|---|---|---|---|
Jiaozhou Bay, Yellow Sea | May 2011 | 35.2 ± 23.4 | CSV | [8] |
July 2011 | 31.1 ± 10.3 | |||
East China Sea | March–April 2011 | 39.4 ± 26.6 | CSV | [22] |
October–November 2011 | 20.5 ± 11.0 | |||
Southern Yellow Sea | July 2013 | 1.7–15.8 | CSV | [42] |
November 2013 | 0.9–38.5 | |||
April 2014 | 3.0–69.8 | |||
January 2016 | 3–100.2 | |||
Sanggou Bay, Yellow Sea | April | 12.0 ± 6.29 | ICP-MS | [43] |
July | 5.00 ± 2.92 | |||
October | 1.83 ± 0.42 | |||
January | 3.36 ± 2.06 | |||
Coastal Ross Sea | January 2014 | 0.5–4.5 | ICP-MS | [54] |
Liverpool Bay | April 2014 | 4.8 ± 0.5 | CSV | [55] |
Yantai Sishili Bay, Northern Yellow Sea | March 2018 | 58.9 ± 11.7 | CSV | This study |
May 2018 | 39.1 ± 6.4 | |||
July 2018 | 42.1 ± 7.6 | |||
September 2018 | 46.2 ± 10.5 | |||
November 2018 | 55.1 ± 11.5 |
4.3. Spatial Distribution Characteristics of DrFe
4.4. Temporal Distribution Characteristics of DrFe
4.5. Correlation between DrFe, TdFe, and Dissolved Reactive Metals
4.6. Bioavailability of DrFe
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, S.R. Abundance of chemical elements in the continental crust a new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Price, N.M. The biogeochemical cycles of trace metals in the oceans. Science 2003, 300, 944–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laglera, L.M.; Santos-Echeandia, J.; Caprara, S.; Monticelli, D. Quantification of iron in seawater at the low picomolar range based on optimization of bromate/ammonia/dihydroxynaphtalene system by catalytic adsorptive cathodic stripping voltammetry. Anal. Chem. 2013, 85, 2486–2492. [Google Scholar] [CrossRef] [Green Version]
- Behrenfeld, M.J.; Milligan, A.J. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 2013, 5, 217–246. [Google Scholar] [CrossRef]
- Lu, M.; Rees, N.V.; Kabakaev, A.S.; Compton, R.G. Determination of Iron: Electrochemical Methods. Electroanalysis 2012, 24, 1693–1702. [Google Scholar] [CrossRef]
- Boyd, P.W.; Watson, A.J.; Law, C.S.; Abraham, E.R.; Zeldis, J. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 2000, 407, 695–702. [Google Scholar] [CrossRef]
- Martin, J.H.; Coale, K.H.; Johnson, K.S.; Fitzwater, S.E. The iron hypothesis: Ecosystem tests in equatorial Pacific waters. Nature 1994, 371, 123–129. [Google Scholar] [CrossRef]
- Su, H.; Yang, R.J.; Pižeta, I.; Omanović, D.; Wang, S.R.; Li, Y. Distribution and Speciation of Dissolved Iron in Jiaozhou Bay (Yellow Sea, China). Front. Mar. Sci. 2016, 3, 99. [Google Scholar] [CrossRef] [Green Version]
- Nagai, T.; Imai, A.; Matsushige, K.; Yokoi, K.; Fukushima, T. Dissolved iron and its speciation in a shallow eutrophic lake and its inflowing rivers. Water Res. 2007, 41, 775–784. [Google Scholar] [CrossRef]
- Hogle, S.L.; Dupont, C.L.; Hopkinson, B.M.; King, A.L.; Buck, K.N.; Roe, K.L.; Stuart, R.K.; Allen, A.E.; Mann, E.L.; Johnson, Z.I.; et al. Pervasive iron limitation at subsurface chlorophyll maxima of the California Current. Proc. Natl. Acad. Sci. USA 2018, 115, 13300–13305. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, C.M.G. Chemical Speciation of Iron in Seawater by Cathodic Stripping Voltammetry with Dihydroxynaphthalene. Anal. Chem. 2006, 78, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Takeda, S.; Furuya, K. Distinct trends in dissolved Fe speciation between shallow and deep waters in the Pacific Ocean. Mar. Chem. 2012, 134–135, 18–28. [Google Scholar] [CrossRef]
- Chen, M.; Dei, R.C.H.; Wang, W.H.; Guo, L.D. Marine diatom uptake of iron bound with natural colloids of different origins. Mar. Chem. 2003, 81, 177–189. [Google Scholar] [CrossRef]
- Hutchins, D.A.; Witter, A.E.; Butler, A.; Luther III, G.W. Competition among marine phytoplankton for diferent chelated iron species. Nature 1999, 400, 858–861. [Google Scholar] [CrossRef]
- Gledhill, M.; van den Berg, C.M.G.; Nolting, R.F.; Timmermans, K.R. Variability in the speciation of iron in the northern North Sea. Mar. Chem. 1998, 59, 283–300. [Google Scholar] [CrossRef]
- Monticelli, D.; Caprara, S. Voltammetric tools for trace element speciation in fresh waters: Methodologies, outcomes and future perspectives. Environ. Chem. 2015, 12, 683–705. [Google Scholar] [CrossRef] [Green Version]
- Achterberg, E.P.; Herzl, V.M.; Braungardt, C.B.; Millward, G.E. Metal behaviour in an estuary polluted by acid mine drainage: The role of particulate matter. Environ. Pollut. 2003, 121, 283–292. [Google Scholar] [CrossRef]
- Huang, S.B.; Wang, Z.J.; Ma, M. Measuring the bioavailable/toxic concentration of copper in natural water by using anodic stripping voltammetry and Vibrio qinghaiensis sp. Nov. Q67 bioassay. Chem. Spec. Bioavailab. 2003, 15, 37–45. [Google Scholar] [CrossRef]
- Campos, M.L.A.M.; van den Berg, C.M.G. Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoxime. Anal. Chim. Acta. 1994, 284, 481–496. [Google Scholar] [CrossRef]
- Croot, P.L.; Johansson, M. Determination of Iron Speciation by Cathodic Stripping Voltammetry in Seawater Using the Competing Ligand 2-(2-Thiazolylazo)-p-cresol (TAC). Electroanalysis 2000, 12, 565–576. [Google Scholar] [CrossRef]
- Rue, E.L.; Bruland, K.W. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration. Mar. Chem. 1995, 50, 117–138. [Google Scholar] [CrossRef]
- Su, H.; Yang, R.J.; Zhang, A.B.; Li, Y. Dissolved iron distribution and organic complexation in the coastal waters of the East China Sea. Mar. Chem. 2015, 173, 208–221. [Google Scholar] [CrossRef]
- Yang, R.J.; Su, H.; Qu, S.L.; Wang, X.C. Capacity of humic substances to complex with iron at different salinities in the Yangtze River estuary and East China Sea. Sci. Rep. 2017, 7, 1381. [Google Scholar] [CrossRef] [PubMed]
- Sukekava, C.; Downes, J.; Slagter, H.A.; Gerringa, L.J.A.; Laglera, L.M. Determination of the contribution of humic substances to iron complexation in seawater by catalytic cathodic stripping voltammetry. Talanta 2018, 189, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, A.P.; van den Berg, C.M.G.; Thies, H.; Nickus, U. The redox speciation of iron in two lakes. Mar. Freshw. Res. 2001, 52, 885–890. [Google Scholar] [CrossRef]
- Boye, M.; Aldrich, A.; van den Berg, C.M.G.; de Jong, J.T.M.; Nirmaier, H.; Veldhuis, M.; Timmermans, K.R.; de Baar, H.J.W. The chemical speciation of iron in the north-east Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2006, 53, 667–683. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wu, D.; Yang, X.; Teng, J.; Liu, Y.L.; Zhang, C.; Zhao, J.M.; Yin, X.N.; You, L.P.; Liu, Y.F.; et al. Microplastic pollution in the surface sediments collected from Sishili Bay, North Yellow Sea, China. Mar. Pollut. Bull. 2019, 141, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Han, H.T.; Pan, D.W.; Zhang, S.H.; Wang, C.C.; Hu, X.P.; Wang, Y.C.; Pan, F. Simultaneous Speciation Analysis of Trace Heavy Metals (Cu, Pb, Cd and Zn) in Seawater from Sishili Bay, North Yellow Sea, China. Bull. Environ. Contam. Toxicol. 2018, 101, 486–493. [Google Scholar] [CrossRef]
- Pan, D.W.; Ding, X.Y.; Han, H.T.; Zhang, S.H.; Wang, C.C. Species, Spatial-Temporal Distribution, and Contamination Assessment of Trace Metals in Typical Mariculture Area of North China. Front. Mar. Sci. 2020, 7, 552893. [Google Scholar] [CrossRef]
- Wang, Y.J.; Liu, D.Y.; Dong, Z.J.; Di, B.P.; Shen, X.H. Temporal and spatial distributions of nutrients under the influence of human activities in Sishili Bay, northern Yellow Sea of China. Mar. Pollut. Bull. 2012, 64, 2708–2719. [Google Scholar] [CrossRef]
- Obata, H.; van den Berg, C.M.G. Determination of Picomolar Levels of Iron in Seawater Using Catalytic Cathodic Stripping Voltammetry. Anal. Chem. 2001, 73, 2522–2528. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.J.; Wang, S.R.; Li, J.X.; Wang, X.L. The determination of iron in sea water by cathodic stripping voltammetry. Period. Ocean Univ. China 2012, 42, 143–149. (In Chinese) [Google Scholar]
- Abualhaija, M.M.; van den Berg, C.M.G. Chemical speciation of iron in seawater using catalytic cathodic stripping voltammetry with ligand competition against salicylaldoxime. Mar. Chem. 2014, 164, 60–74. [Google Scholar] [CrossRef]
- Aldrich, A.P.; van den Berg, C.M.G. Determination of Iron and Its Redox Speciation in Seawater Using Catalytic Cathodic Stripping Voltammetry. Electroanalysis 1998, 10, 369–373. [Google Scholar] [CrossRef]
- Achterberg, E.P.; van den Berg, C.M.G. In-line ultraviolet-digestion of natural water samples for trace metal determination using an automated voltammetric system. Anal. Chim. Acta 1994, 291, 213–232. [Google Scholar] [CrossRef]
- Lin, M.Y.; Pan, D.W.; Hu, X.P.; Zhu, Y.; Han, H.T.; Li, F. Speciation analysis of iron in Yantai coastal waters. Environ. Chem. 2016, 35, 297–304. (In Chinese) [Google Scholar]
- Kang, J.; Chen, X.Q.; Zhang, M. The distribution of chlorophyll a and its influencing factors in different regions of the Bering Sea. Acta Oceanol. Sin. 2014, 33, 112–119. [Google Scholar] [CrossRef]
- Carbone, M.E.; Spetter, C.V.; Marcovecchio, J.E. Seasonal and spatial variability of macronutrients and Chlorophyll a based on GIS in the South American estuary (Bahía Blanca, Argentina). Environ. Earth Sci. 2016, 75, 736. [Google Scholar] [CrossRef]
- Shen, G.; Shi, B. Marine Ecology; Science Press: Beijing, China, 2002; pp. 100–230. (In Chinese) [Google Scholar]
- Herzog, S.D.; Persson, P.; Kritzberg, E.S. Salinity Effects on Iron Speciation in Boreal River Waters. Environ. Sci. Technol. 2017, 51, 9747–9755. [Google Scholar] [CrossRef]
- Lippiatt, S.M.; Lohan, M.C.; Bruland, K.W. The distribution of reactive iron in northern Gulf of Alaska coastal waters. Mar. Chem. 2010, 121, 187–199. [Google Scholar] [CrossRef]
- Zhu, M.H.; Yang, R.J.; Li, Y.; Su, H.; Shan, Q.Q.; Ning, Y.T.; Fu, S.L.; Wang, S.R. Seasonal and spatial variabilities of dissolved iron in southern Yellow Sea. Chemosphere 2020, 256, 126856. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.C.; Zhang, R.F.; Liu, S.M.; Wu, Y.; Jiang, Z.J.; Zhang, J. Seasonal distribution of dissolved iron in the surface water of Sanggou Bay, a typical aquaculture area in China. Mar. Chem. 2017, 189, 1–9. [Google Scholar] [CrossRef]
- Gobler, C.J.; Donat, J.R.; Consolvo, J.A., III; Sanudo-Wilhelmy, S.A. Physicochemical speciation of iron during coastal algal blooms. Mar. Chem. 2002, 22, 71–89. [Google Scholar] [CrossRef]
- Yang, B.; Gao, X.L.; Zhao, J.M.; Xie, L.; Liu, Y.L.; Lv, X.Q.; Xing, Q.G. The impacts of intensive scallop farming on dissolved organic matter in the coastal waters adjacent to the Yangma Island, North Yellow Sea. Sci. Total Environ. 2022, 807, 150989. [Google Scholar] [CrossRef]
- Li, H.M.; Zhang, Y.Y.; Liang, Y.T.; Chen, J.; Zhu, Y.C.; Zhao, Y.T.; Jiao, N.Z. Impacts of maricultural activities on characteristics of dissolved organic carbon and nutrients in a typical raft-culture area of the Yellow Sea, North China. Mar. Pollut. Bull. 2018, 137, 456–464. [Google Scholar] [CrossRef]
- Yang, B.; Gao, X.L.; Zhao, J.M.; Liu, Y.L.; Gao, T.C.; Lui, H.-K.; Huang, T.-H.; Chen, C.-T.A.; Xing, Q.G. The influence of summer hypoxia on sedimentary phosphorus biogeochemistry in a coastal scallop farming area, North Yellow Sea. Sci. Total Environ. 2021, 759, 143486. [Google Scholar] [CrossRef]
- Yang, B.; Gao, X.L.; Zhao, J.M.; Liu, Y.L. Summer deoxygenation in a bay scallop (Argopecten irradians) farming area: The decisive role of water temperature, stratification and beyond. Mar. Pollut. Bull. 2021, 173, 113092. [Google Scholar] [CrossRef]
- Li, Z.; Bao, X.W.; Wang, Y.Z.; Li, N.; Qiao, L.L. Seasonal distribution and relationship of water mass and suspended load in North Yellow Sea. Chin. J. Oceanol. Limnol. 2009, 27, 907–908. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.L.; Guo, W.D.; Zhao, J.M.; Li, Y.F. Origin and Dynamics of Dissolved Organic Matter in a Mariculture Area Suffering from Summertime Hypoxia and Acidification. Front. Mar. Sci. 2018, 5, 325. [Google Scholar] [CrossRef]
- Chen, X.H.; Li, T.G.; Zhang, X.H.; Li, R.H. A Holocene Yalu River-derived fine-grained deposit in the southeast coastal area of the Liaodong Peninsula. Chin. J. Oceanol. Limnol. 2013, 31, 636–647. [Google Scholar] [CrossRef]
- Ma, K.Y.; Yang, R.J.; Qu, S.L.; Zhang, Y.Y.; Liu, Y.; Xie, H.; Zhu, M.H.; Bi, M.Q. Evidence for coupled iron and nitrate reduction in the surface waters of Jiaozhou Bay. J. Environ. Sci. 2021, 108, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Gao, X.L.; Liu, Y.L.; Yang, B.; Lv, X.Q.; Zhao, J.M.; Xing, Q.G. Atmospheric dry deposition of water-soluble organic matter: An underestimated carbon source to the coastal waters in North China. Sci. Total Environ. 2022, 818, 151772. [Google Scholar] [CrossRef] [PubMed]
- Rivaro, P.; Ardini, F.; Grotti, M.; Aulicino, G.; Cotroneo, Y.; Fusco, G.; Mangoni, O.; Bolinesi, F.; Saggiomo, M.; Celussi, M. Mesoscale variability related to iron speciation in a coastal Ross Sea area (Antarctica) during summer 2014. Chem. Ecol. 2018, 35, 1–19. [Google Scholar] [CrossRef]
- Mahmood, A.; Abualhaija, M.M.; van den Berg, C.M.G.; Sander, S.G. Organic speciation of dissolved iron in estuarine and coastal waters at multiple analytical windows. Mar. Chem. 2015, 177, 706–719. [Google Scholar] [CrossRef]
- Dong, Z.J.; Liu, D.Y.; Keesing, J.K. Jellyfish blooms in China: Dominant species, causes and consequences. Mar. Pollut. Bull. 2010, 60, 954–963. [Google Scholar] [CrossRef]
- Hao, Y.J.; Tang, D.L.; Yu, L.; Xing, Q.G. Nutrient and chlorophyll a anomaly in red-tide periods of 2003–2008 in Sishili Bay, China. Chin. J. Oceanol. Limnol. 2011, 29, 664–673. [Google Scholar] [CrossRef]
- Li, B.Q.; Keesing, J.K.; Liu, D.Y.; Han, Q.X.; Wang, Y.J.; Dong, Z.J.; Chen, Q. Anthropogenic impacts on hyperbenthos in the coastal waters of Sishili Bay, Yellow Sea. Chin. J. Oceanol. Limnol. 2013, 31, 1257–1267. [Google Scholar] [CrossRef]
- Dong, Z.J.; Liu, D.Y.; Wang, Y.J.; Di, B.P. Temporal and spatial variations of coastal water quality in Sishili Bay, northern Yellow Sea of China. Aquat. Ecosyst. Health 2019, 22, 30–39. [Google Scholar] [CrossRef]
- Shaked, Y.; Kustka, A.B.; Morel, F.M.M. A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol. Oceanogr. 2005, 50, 872–882. [Google Scholar] [CrossRef] [Green Version]
- Morel, F.M.M.; Kustka, A.B.; Shaked, Y. The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol. Oceanogr. 2008, 53, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Sutak, R.; Camadro, J.M.; Lesuisse, E. Iron Uptake Mechanisms in Marine Phytoplankton. Front. Microbiol. 2020, 11, 566691. [Google Scholar] [CrossRef] [PubMed]
- Cabanes, D.J.E.; Blanco-Ameijeiras, S.; Bergin, K.; Trimborn, S.; Völkner, C.; Lelchat, F.; Hassler, C.S. Using Fe chemistry to predict Fe uptake rates for natural plankton assemblages from the Southern Ocean. Mar. Chem. 2020, 225, 10853. [Google Scholar] [CrossRef]
- Morrissey, J.; Sutak, R.; Paz-Yepes, J.; Tanaka, A.; Moustafa, A.; Veluchamy, A.; Thomas, Y.; Botebol, H.; Bouget, F.Y.; McQuaid, J.B.; et al. A Novel Protein, Ubiquitous in Marine Phytoplankton, Concentrates Iron at the Cell Surface and Facilitates Uptake. Curr. Biol. 2015, 25, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Holmes, T.M.; Wuttig, K.; Chase, Z.; van der Merwe, P.; Townsend, A.T.; Schallenberg, C.; Tonnard, M.; Bowie, A.R. Iron availability influences nutrient drawdown in the Heard and McDonald Islands region, Southern Ocean. Mar. Chem. 2019, 211, 1–14. [Google Scholar] [CrossRef]
- Parekh, P.; Follows, M.J.; Boyle, E.A. Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 2005, 19, 1–16. [Google Scholar] [CrossRef]
Time | T °C | DO mg/L | Cond mS/cm | SAL PSU | pH | Chl a μg/L |
---|---|---|---|---|---|---|
March | 3.9 ± 0.3 | 13.4 ± 1.7 | 50.1 ± 0.6 | 31.8 ± 0.4 | 8.1 ± 0.0 | 0.1 ± 0.2 |
May | 15.6 ± 0.6 | 8.5 ± 0.8 | 48.2 ± 0.2 | 31.5 ± 0.2 | 8.1 ± 0.1 | 1.9 ± 0.8 |
July | 23.8 ± 0.8 | 6.4 ± 0.8 | 47.8 ± 1.0 | 31.1 ± 0.8 | 8.1 ± 0.1 | 3.1 ± 5.9 |
September | 23.1 ± 0.2 | 6.3 ± 0.8 | 48.3 ± 0.2 | 31.5 ± 0.1 | 8.1 ± 0.1 | 4.9 ± 5.0 |
November | 13.8 ± 0.2 | 7.9 ± 0.4 | 47.7 ± 0.4 | 31.1 ± 0.2 | 8.1 ± 0.1 | 0.3 ± 0.2 |
March | May | July | ||||
---|---|---|---|---|---|---|
Average | Range | Average | Range | Average | Range | |
TdFe | 58.9 ± 11.7 | 42.4–82.0 | 39.1 ± 6.4 | 27.9–53.3 | 42.0 ± 7.6 | 27.8–52.9 |
DrFe | 9.4 ± 0.5 | 8.5–10.2 | 10.7 ± 1.8 | 8.3–13.3 | 9.6 ± 1.0 | 8.6–11.2 |
September | November | |||||
Average | Range | Average | Range | |||
TdFe | 46.2 ± 10.5 | 34.0–64.9 | 55.1 ± 11.5 | 41.3–76.7 | ||
DrFe | 10.8 ± 1.7 | 8.1–12.6 | 7.9 ± 0.7 | 6.8–9.0 |
March | May | November | |
---|---|---|---|
[PO4] | 4.0 ± 2.0 | 5.0 ± 1.0 | 7.0 ± 4.0 |
[NO3] | 70.0 ± 20.0 | 20.0 ± 20.0 | 30.0 ± 10.0 |
Fe*(P) | 9.3 ± 0.5 | 10.6 ± 1.8 | 7.8 ± 0.7 |
Fe*(N) | 9.2 ± 0.5 | 10.6 ± 1.8 | 7.9 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Luan, Y.; Pan, D.; Lu, Y.; Han, H.; Zhang, S. Concentration, Spatial-Temporal Distribution, and Bioavailability of Dissolved Reactive Iron in Northern Coastal China Seawater. J. Mar. Sci. Eng. 2022, 10, 890. https://doi.org/10.3390/jmse10070890
Wang C, Luan Y, Pan D, Lu Y, Han H, Zhang S. Concentration, Spatial-Temporal Distribution, and Bioavailability of Dissolved Reactive Iron in Northern Coastal China Seawater. Journal of Marine Science and Engineering. 2022; 10(7):890. https://doi.org/10.3390/jmse10070890
Chicago/Turabian StyleWang, Chenchen, Yongsheng Luan, Dawei Pan, Yuxi Lu, Haitao Han, and Shenghui Zhang. 2022. "Concentration, Spatial-Temporal Distribution, and Bioavailability of Dissolved Reactive Iron in Northern Coastal China Seawater" Journal of Marine Science and Engineering 10, no. 7: 890. https://doi.org/10.3390/jmse10070890
APA StyleWang, C., Luan, Y., Pan, D., Lu, Y., Han, H., & Zhang, S. (2022). Concentration, Spatial-Temporal Distribution, and Bioavailability of Dissolved Reactive Iron in Northern Coastal China Seawater. Journal of Marine Science and Engineering, 10(7), 890. https://doi.org/10.3390/jmse10070890