Importance of Pre-Storm Morphological Factors in Determination of Coastal Highway Vulnerability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Correlation Analysis
2.3. Binary Classifiers
2.3.1. K-Nearest Neighbor (KNN)
2.3.2. Ensemble of Decision Trees (EDT)
- is the true class label;
- are normalized weights;
- is the predicted classification score calculated, as shown in Equation (4):
- are weights of the weak hypotheses () in the ensemble that are used to determine weighted error (), as shown in Equation (5):
- is a vector of predictor values for observation n;
- is the true class label;
- is the prediction of learner with index t;
- is the indicator function;
- is the weight of observation n at time step t.
2.3.3. EDT Settings
2.3.4. Model Training and Testing
2.4. Metrics of Performance
3. Results
3.1. Correlation Analysis and Feature Selection
3.2. KNN and EDT Performances
- H0 = The pairwise difference between F-1 scores from KNN and EDT has a mean equal to zero at the 5% significance level.
- HA = The pairwise difference between F-1 scores from KNN and EDT has a mean not equal to zero at the 5% significance level.
- H0 = The pairwise difference between AUC values from KNN and EDT has a mean equal to zero at the 5% significance level.
- HA = The pairwise difference between AUC values from KNN and EDT has a mean not equal to zero at the 5% significance level.
3.3. EDT Feature Importance Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daniel, J.S.; Jacobs, J.M.; Douglas, E.; Mallick, R.B.; Hayhoe, K. Impact of climate change on pavement performance: Preliminary lessons learned through the infrastructure and climate network (ICNet). In Climatic Effects on Pavement and Geotechnical Infrastructure; ASCE: Reston, VA, USA, 2014; pp. 1–9. [Google Scholar]
- Office for Coastal Management, NOAA. Hurricane Costs. 25 May 2022. Available online: https://coast.noaa.gov/states/fast-facts/hurricane-costs.html (accessed on 26 May 2022).
- NCDOT. Maintenance Operations and Performance Analysis Report (MOPAR) (31 December 2020). Asset Management NCDOT. Connect NCDOT. Available online: https://connect.ncdot.gov/resources/Asset-Management/Pages/default.aspx (accessed on 26 May 2022).
- Velásquez-Montoya, L.; Sciaudone, E.J.; Smyre, E.; Overton, M.F. Vulnerability indicators for coastal roadways based on barrier island morphology and shoreline change predictions. Nat. Hazards Rev. 2021, 22, 04021003. [Google Scholar] [CrossRef]
- Behr, A.; Berglund, E.; Sciaudone, E. Effectiveness of indicators for assessing the vulnerability of barrier island highways. Transp. Res. Part D Transp. Environ. 2022, 105, 103234. [Google Scholar] [CrossRef]
- Helderop, E.; Grubesic, T.H. Hurricane storm surge in Volusia County, Florida: Evidence of a tipping point for infrastructure damage. Disasters 2019, 43, 157–180. [Google Scholar] [CrossRef] [PubMed]
- Neumann, J.E.; Emanuel, K.; Ravela, S.; Ludwig, L.; Kirshen, P.; Bosma, K.; Martinich, J. Joint effects of storm surge and sea-level rise on US Coasts: New economic estimates of impacts, adaptation, and benefits of mitigation policy. Clim. Chang. 2015, 129, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Pennison, G.P.; Cloutier, R.J.; Webb, B.M. Local Coastal Roads–Next Generation. In Proceedings of the IIE Annual Conference Proceedings, Norcross, GA, USA, 19–22 May 2018; pp. 943–948. Available online: https://www.proquest.com/scholarly-journals/local-coastal-roads-next-generation/docview/2553578393/se-2?accountid=1455 (accessed on 11 March 2022).
- Gutierrez, B.T.; Plant, N.G.; Thieler, E.R.; Turecek, A. Using a Bayesian network to predict barrier island geomorphologic characteristics. J. Geophys. Res. Earth Surface 2015, 120, 2452–2475. [Google Scholar] [CrossRef] [Green Version]
- Enwright, N.M.; Wang, L.; Wang, H.; Osland, M.J.; Feher, L.C.; Borchert, S.M.; Day, R.H. Modeling barrier island habitats using landscape position information. Remote Sens. 2019, 11, 976. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delvar, M.A. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Angalakudati, M.; Calzada, J.; Farias, V.; Gonynor, J.; Monsch, M.; Papush, A.; Williams, J. Improving emergency storm planning using machine learning. In Proceedings of the 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 14–17 April 2014; pp. 1–6. [Google Scholar]
- Yang, F.; Wanik, D.W.; Cerrai, D.; Bhuiyan, M.A.E.; Anagnostou, E.N. Quantifying Uncertainty in Machine Learning-Based Power Outage Prediction Model Training: A Tool for Sustainable Storm Restoration. Sustainability 2020, 12, 1525. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Irish, J.L.; Bensi, M.T.; Marcy, D.C. Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning. Coast. Eng. 2021, 170, 104024. [Google Scholar] [CrossRef]
- Harvey, J.; Kumar, S.; Bao, S. Machine Learning-Based Models for Assessing Impacts Before, During and After Hurricane Florence. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 714–721. [Google Scholar] [CrossRef]
- Fan, C.; Wu, F.; Mostafavi, A. A Hybrid Machine Learning Pipeline for Automated Mapping of Events and Locations From Social Media in Disasters. IEEE Access 2020, 8, 10478–10490. [Google Scholar] [CrossRef]
- Devaraj, A.; Murthy, D.; Dontula, A. Machine-learning methods for identifying social media-based requests for urgent help during hurricanes. Int. J. Disaster Risk Reduct. 2020, 51, 101757. [Google Scholar] [CrossRef]
- Claudino-Sales, V.; Wang, P.; Horwitz, M.H. Factors controlling the survival of coastal dunes during multiple hurricane impacts in 2004 and 2005: Santa Rosa barrier island, Florida. Geomorphology 2008, 95, 295–315. [Google Scholar] [CrossRef]
- Beuzen, T.; Harley, M.D.; Splinter, K.D.; Turner, I.L. Controls of Variability in Berm and Dune Storm Erosion. JGR Earth Surf. 2019, 124, 2647–2665. [Google Scholar] [CrossRef]
- Dolan RO BE, R.T.; Hayden, B.P.; May, P.; May, S. The reliability of shoreline change measurements from aerial photographs. Shore Beach 1980, 48, 22–29. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA). Online Vertical Datum Transformation (VDatum). 2022. Available online: https://vdatum.noaa.gov/vdatumweb/ (accessed on 16 July 2022).
- Ortiz, A.C.; Roy, S.; Edmonds, D.A. Land loss by pond expansion on the Mississippi River Delta Plain. Geophys. Res. Lett. 2017, 44, 3635–3642. [Google Scholar] [CrossRef]
- Doran, K.S.; Long, J.W.; Overbeck, J.R. A Method for Determining Average Beach Slope and Beach Slope Variability for US Sandy Coastlines; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2015. [Google Scholar]
- Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. ICML 1996, 96, 148–156. [Google Scholar]
- Mounce, S.R.; Ellis, K.; Edwards, J.M.; Speight, V.L.; Jakomis, N.; Boxall, J.B. Ensemble decision tree models using RUSBoost for estimating risk of iron failure in drinking water distribution systems. Water Resour. Manag. 2017, 31, 1575–1589. [Google Scholar] [CrossRef] [Green Version]
- Winkler, D.; Haltmeier, M.; Kleidorfer, M.; Rauch, W.; Tscheikner-Gratl, F. Pipe failure modelling for water distribution networks using boosted decision trees. Struct. Infrastruct. Eng. 2018, 14, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Fasaee MA, K.; Pesantez, J.; Pieper, K.J.; Ling, E.; Benham, B.; Edwards, M.; Berglund, E. Developing Early Warning Systems to Predict Water Lead Levels in Tap Water for Private Systems. Water Res. 2022, 221, 118787. [Google Scholar] [CrossRef] [PubMed]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Gelbart, M.A.; Snoek, J.; Adams, R.P. Bayesian optimization with unknown constraints. arXiv 2014, arXiv:1403.5607. [Google Scholar]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Pesantez, J.E.; Berglund, E.Z.; Kaza, N. Smart meters data for modeling and forecasting water demand at the user-level. Environ. Model. Softw. 2020, 125, 104633. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, P.; Zheng, Z.; Tolliver, D.; Keramati, A. Accident prediction accuracy assessment for highway-rail grade crossings using random forest algorithm compared with decision tree. Reliab. Eng. Syst. Saf. 2020, 200, 106931. [Google Scholar] [CrossRef]
- Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Gaudreault, J.G.; Branco, P.; Gama, J. An Analysis of Performance Metrics for Imbalanced Classification. In Discovery Science, Proceedings of the International Conference on Discovery Science, Halifax, NS, Canada, 11–13 October 2021; Springer: Cham, Switzerland, 2021; pp. 67–77. [Google Scholar]
- Van der Meer, J.W.; Briganti, R.; Zanuttigh, B.; Wang, B. Wave transmission and reflection at low-crested structures: Design formulae, oblique wave attack and spectral change. Coast. Eng. 2005, 52, 915–929. [Google Scholar] [CrossRef]
- Breteler, M.K.; Bezuijen, A.; Provoost, Y. Influence of oblique wave attack on stability of placed block revetments. In Coastal Engineering 2008; McKee Smith, J., Ed.; World Scientific: Hackensack, NJ, USA, 2009; Volume 4, pp. 3032–3057. [Google Scholar]
- Van Gent, M.R.A.; Wolters, G. Effects of storm duration and oblique wave attack on open filters underneath rock armoured slopes. Coast. Eng. 2018, 135, 55–65. [Google Scholar] [CrossRef]
- Istrati, D.; Buckle, I.G. Tsunami Loads on Straight and Skewed Bridges-Part 1: Experimental Investigation and Design Recommendations; Report Prepared for Oregon Dept. of Transportation & Federal Highway Administration; Oregon Dept. of Transportation: Salem, OR, USA, 2021; 193p + appx. [Google Scholar]
- Istrati, D.; Buckle, I.G. Tsunami Loads on Straight and Skewed Bridges-Part 2: Numerical Investigation and Design Recommendations; Report Prepared for Oregon Dept. of Transportation & Federal Highway Administration; Oregon Dept. of Transportation: Salem, OR, USA, 2021; 88p. [Google Scholar]
- Xiang, T.; Istrati, D. Assessment of extreme wave impact on coastal decks with different geometries via the arbitrary Lagrangian-Eulerian method. J. Mar. Sci. Eng. 2021, 9, 1342. [Google Scholar] [CrossRef]
- Coops, H.; Geilen, N.; Verheij, H.J.; Boeters, R.; van der Velde, G. Interactions between waves, bank erosion and emergent vegetation: An experimental study in a wave tank. Aquat. Bot. 1996, 53, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Vuik, V.; Jonkman, S.N.; Borsje, B.W.; Suzuki, T. Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coast. Eng. 2016, 116, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Lo, V.B.; Bouma, T.J.; van Belzen, J.; Van Colen, C.; Airoldi, L. Interactive effects of vegetation and sediment properties on erosion of salt marshes in the Northern Adriatic Sea. Mar. Environ. Res. 2017, 131, 32–42. [Google Scholar] [CrossRef]
- Sundar, V.; Murali, K.; Noarayanan, L. Effect of vegetation on run-up and wall pressures due to cnoidal waves. J. Hydraul. Res. 2011, 49, 562–567. [Google Scholar] [CrossRef]
- Overton, M.F.; Fisher, J.S. NC Coastal Highway Vulnerability; Report No. FHWA/NC/2004-04; Prepared for U.S. Department of Transportation; US Dept. of Transportation: Washington, DC, USA, 2005; 88p. Available online: https://connect.ncdot.gov/projects/research/RNAProjDocs/2002-05FinalReport.pdf (accessed on 11 March 2022).
- Brodie, K.L.; Bruder, B.L.; Slocum, R.J.; Spore, N.J. Simultaneous Mapping of Coastal Topography and Bathymetry From a Lightweight Multicamera UAS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6844–6864. [Google Scholar] [CrossRef]
- Salameh, E.; Frappart, F.; Almar, R.; Baptista, P.; Heygster, G.; Lubac, B.; Raucoules, D.; Almeida, L.P.; Bergsma, E.W.J.; Capo, S.; et al. Monitoring Beach Topography and Nearshore Bathymetry Using Spaceborne Remote Sensing: A Review. Remote Sens. 2019, 11, 2212. [Google Scholar] [CrossRef] [Green Version]
Storm # | Storm | Date and Duration | Storm Approach | Peak Wave Height (ft) | Max Water Level (ft NAVD88) | Storm Impacts to Study Area |
---|---|---|---|---|---|---|
1 | Hurricane Irene | August 2011 50 h | Sound-side | 21.4 | 3.0 | Island breaches, erosive damage to the road, and overwash on road |
2 | Hurricane Sandy | October 2012 88 h | Ocean-side | 18.8 | 4.5 | Wide-spread overwash on road |
3 | Hurricane Arthur | July 2014 14 h | Sound-side | 18.5 | 1.3 | Erosive damage to pavement, overwash on road |
4 | Nor’easter | February 2016 55 h | N/A | 15.7 | 3.5 | Overwash on road |
5 | Hurricane Matthew | October 2016 153 h | Ocean-side | 17.2 | 3.3 | Overwash on road |
6 | Nor’easter | March 2018 148 h | N/A | 17.5 | 3.7 | Overwash on road |
7 | Hurricane Dorian | September 2019 47 h | Ocean-side | 21.9 | 4.6 | Overwash on road |
Geomorphological Characteristic | |
---|---|
|
|
Hyperparameter | Search Range |
---|---|
Number of neighbors | |
Distance metric | City block, Chebychev, Correlation, Cosine, Euclidean, Hamming, Jaccard, Mahalanobis, Minkowski (cubic), Spearman |
Distance weight | Equal |
Inverse | |
Squared inverse | |
Standardize data | True |
False |
Classified Vulnerable | Classified Not Vulnerable | |
---|---|---|
Observed vulnerable | True positives | False negatives |
Observed not vulnerable | False positives | True negatives |
Storm | Parameter | [5] | KNN | EDT |
---|---|---|---|---|
1 | F-1 Score | 0.85 | 0.93 | 0.92 |
2 | 0.88 | 0.92 | 0.91 | |
3 | 0.83 | 0.90 | 0.89 | |
4 | 0.57 | 0.96 | 0.96 | |
5 | 0.76 | 0.94 | 0.93 | |
6 | 0.89 | 0.97 | 0.97 | |
7 | 0.93 | 0.95 | 0.95 |
Storm | Parameter | [5] | KNN | EDT |
---|---|---|---|---|
1 | AUC values | 0.91 | 0.92 | 0.97 |
2 | 0.85 | 0.91 | 0.97 | |
3 | 0.89 | 0.89 | 0.96 | |
4 | 0.53 | 0.81 | 0.94 | |
5 | 0.74 | 0.91 | 0.95 | |
6 | 0.94 | 0.96 | 0.99 | |
7 | 0.94 | 0.94 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesantez, J.E.; Behr, A.; Sciaudone, E. Importance of Pre-Storm Morphological Factors in Determination of Coastal Highway Vulnerability. J. Mar. Sci. Eng. 2022, 10, 1158. https://doi.org/10.3390/jmse10081158
Pesantez JE, Behr A, Sciaudone E. Importance of Pre-Storm Morphological Factors in Determination of Coastal Highway Vulnerability. Journal of Marine Science and Engineering. 2022; 10(8):1158. https://doi.org/10.3390/jmse10081158
Chicago/Turabian StylePesantez, Jorge E., Adam Behr, and Elizabeth Sciaudone. 2022. "Importance of Pre-Storm Morphological Factors in Determination of Coastal Highway Vulnerability" Journal of Marine Science and Engineering 10, no. 8: 1158. https://doi.org/10.3390/jmse10081158