Potential Short-Term Effects of Mine Tailings on Phytoplankton Assemblages in the Open Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Addition Experiments of Fine-Grained Particles
2.2. Assessment of Phytoplankton Photo-Physiology Using the FIRe System
2.3. Community Composition of Photosynthetic Eukaryotes
2.4. Other Analyses
3. Results and Discussion
3.1. Environmental Characteristics of the Study Area
3.2. Effects of Ore Particles on Fluorescence-Based Phytoplankton Activity
3.3. Effects of Ore Particles on Community Composition of Photosynthetic Eukaryotes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, K.A.; Thompson, K.F.; Johnston, P.; Santillo, D. An Overview of Seabed Mining Including the Current State of Development, Environmental Impacts, and Knowledge Gaps. Front. Mar. Sci. 2018, 4, 418. [Google Scholar] [CrossRef]
- Washburn, T.W.; Turner, P.J.; Durden, J.M.; Jones, D.O.; Weaver, P.; Van Dover, C.L. Ecological risk assessment for deep-sea mining. Ocean Coast. Manag. 2019, 176, 24–39. [Google Scholar] [CrossRef]
- Ramirez-Llodra, E.; Trannum, H.C.; Evenset, A.; Levin, L.A.; Andersson, M.; Finne, T.E.; Hilario, A.; Flem, B.; Christensen, G.; Schaanning, M.; et al. Submarine and deep-sea mine tailing placements: A review of current practices, environmental issues, natural analogs and knowledge gaps in Norway and internationally. Mar. Pollut. Bull. 2015, 97, 13–35. [Google Scholar] [CrossRef] [PubMed]
- Vare, L.L.; Baker, M.C.; Howe, J.A.; Levin, L.; Neira, C.; Ramirez-Llodra, E.Z.; Reichelt-Brushett, A.; Rowden, A.; Shimmield, T.M.; Simpson, S.; et al. Scientific Considerations for the Assessment and Management of Mine Tailings Disposal in the Deep Sea. Front. Mar. Sci. 2018, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Burd, B.J. Evaluation of mine tailings effects on a benthic marine infaunal community over 29 years. Mar. Environ. Res. 2002, 53, 481–519. [Google Scholar] [CrossRef]
- Lee, M.R.; Correa, J.A. Effects of copper mine tailings disposal on littoral meiofaunal assemblages in the Atacama region of northern Chile. Mar. Environ. Res. 2005, 59, 1–18. [Google Scholar] [CrossRef]
- Mevenkamp, L.; Stratmann, T.; Guilini, K.; Moodley, L.; Van Oevelen, D.; Vanreusel, A.; Westerlund, S.; Sweetman, A.K. Impaired Short-Term Functioning of a Benthic Community from a Deep Norwegian Fjord Following Deposition of Mine Tailings and Sediments. Front. Mar. Sci. 2017, 4, 169. [Google Scholar] [CrossRef]
- Ramirez-Llodra, E.; Trannum, H.C.; Andersen, G.S.; Baeten, N.J.; Brooks, S.J.; Escudero-Oñate, C.; Gundersen, H.; Kleiv, R.A.; Ibragimova, O.; Lepland, A.; et al. New insights into submarine tailing disposal for a reduced environmental footprint: Lessons learnt from Norwegian fjords. Mar. Pollut. Bull. 2022, 174, 113150. [Google Scholar] [CrossRef]
- Hughes, D.J.; Shimmield, T.M.; Black, K.D.; Howe, J.A. Ecological impacts of large-scale disposal of mining waste in the deep sea. Sci. Rep. 2015, 5, 9985. [Google Scholar] [CrossRef] [Green Version]
- Dabrowska, A.; Kamennaya, N.A.; Murton, B.J.; Zubkov, M.V. Impact of ferromanganese ore pollution on phytoplankton CO2 fixation in the surface ocean. Mar. Pollut. Bull. 2019, 146, 1002–1006. [Google Scholar] [CrossRef]
- Hauton, C.; Brown, A.; Thatje, S.; Mestre, N.C.; Bebianno, M.J.; Martins, I.; Bettencourt, R.; Canals, M.; Sanchez-Vidal, A.; Shillito, B.; et al. Identifying Toxic Impacts of Metals Potentially Released during Deep-Sea Mining—A Synthesis of the Challenges to Quantifying Risk. Front. Mar. Sci. 2017, 4, 368. [Google Scholar] [CrossRef] [Green Version]
- Fuchida, S.; Yokoyama, A.; Fukuchi, R.; Ishibashi, J.-I.; Kawagucci, S.; Kawachi, M.; Koshikawa, H. Leaching of Metals and Metalloids from Hydrothermal Ore Particulates and Their Effects on Marine Phytoplankton. ACS Omega 2017, 2, 3175–3182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Kuzminov, F.I.; Bailleul, B.; Yang, E.J.; Lee, S.; Falkowski, P.G.; Gorbunov, M.Y. Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica. Limnol. Oceanogr. 2017, 62, 2260–2276. [Google Scholar] [CrossRef]
- Bibby, T.S.; Gorbunov, M.Y.; Wyman, K.W.; Falkowski, P.G. Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 1310–1320. [Google Scholar] [CrossRef]
- Choi, D.H.; An, S.M.; Chun, S.; Yang, E.C.; Selph, K.E.; Lee, C.M.; Noh, J.H. Dynamic changes in the composition of photosynthetic picoeukaryotes in the northwestern Pacific Ocean revealed by high-throughput tag sequencing of plastid 16S rRNA genes. FEMS Microbiol. Ecol. 2015, 92, fiv170. [Google Scholar] [CrossRef]
- Parsons, T.R.; Maita, Y.; Lalli, C.M. A Manual of Chemical and Biological Methods for Seawater Analysis; Pergamon Press: Oxford, UK, 1984; 173p. [Google Scholar]
- Devilla, R.; Brown, M.; Donkin, M.; Tarran, G.; Aiken, J.; Readman, J. Impact of antifouling booster biocides on single microalgal species and on a natural marine phytoplankton community. Mar. Ecol. Prog. Ser. 2005, 286, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Kong, Q.; Dong, W.; Lin, Z. Toxicity of Naphthenic Acids on the Chlorophyll Fluorescence Parameters and Antioxidant Enzyme Activity of Heterosigma akashiwo. Antioxidants 2021, 10, 1582. [Google Scholar] [CrossRef]
- Kottuparambil, S.; Jin, P.; Agusti, S. Adaptation of Red Sea Phytoplankton to Experimental Warming Increases Their Tolerance to Toxic Metal Exposure. Front. Environ. Sci. 2019, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Stasiak, M.; Molenda, M.; Opaliński, I.; Błaszczak, W. Mechanical properties of native maize, wheat, and potato starches. Czech J. Food Sci. 2013, 31, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Margolis, S.V.; Burns, R.G. Pacific Deep-Sea Manganese Nodules: Their Distribution, Composition, and Origin. Annu. Rev. Earth Planet. Sci. 1976, 4, 229–263. [Google Scholar] [CrossRef]
- Halbach, P.; Blum, N.; Münch, U.; Plüger, W.; Garbe-Schönberg, D.; Zimmer, M. Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Miner. Deposita 1998, 33, 302–309. [Google Scholar] [CrossRef]
- Saeck, E.; O’Brien, K.; Burford, M. Nitrogen response of natural phytoplankton communities: A new indicator based on photosynthetic efficiency Fv/Fm. Mar. Ecol. Prog. Ser. 2016, 552, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Pérez, P.; Fernández, E.; Beiras, R. Use of Fast Repetition Rate Fluorometry on Detection and Assessment of PAH Toxicity on Microalgae. Water Air Soil Pollut. 2009, 209, 345–356. [Google Scholar] [CrossRef]
- Othman, H.B.; Leboulanger, C.; Le Floc’h, E.; Hadj Mabrouk, H.; Sakka Hlaili, A. Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: Does cell size really matter? J. Hazard. Mater. 2012, 243, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Not, F.; Latasa, M.; Scharek, R.; Viprey, M.; Karleskind, P.; Balagué, V.; Ontoria-Oviedo, I.; Cumino, A.; Goetze, E.; Vaulot, D.; et al. Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 1456–1473. [Google Scholar] [CrossRef] [Green Version]
- Decelle, J.; Romac, S.; Stern, R.F.; Bendif, E.M.; Zingone, A.; Audic, S.; Guiry, M.D.; Guillou, L.; Tessier, D.; Le Gall, F.; et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 2015, 15, 1435–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, M.S.; Evans, L.V. The effects of copper and zinc on growth of the fouling diatoms amphora and amphiprora. Biofouling 1988, 1, 3–18. [Google Scholar] [CrossRef]
- Hollibaugh, J.; Seibert, D.; Thomas, W. A comparison of the acute toxicities of tenheavy metals to phytoplankton from Saanich Inlet, B.C., Canada. Estuar. Coast. Mar. Sci. 1980, 10, 93–105. [Google Scholar] [CrossRef]
- Nayar, S.; Goh, B.; Chou, L. Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms. Ecotoxicol. Environ. Saf. 2004, 59, 349–369. [Google Scholar] [CrossRef]
- Alprol, A.E.; Heneash, A.M.M.; Soliman, A.M.; Ashour, M.; Alsanie, W.F.; Gaber, A.; Mansour, A.T. Assessment of Water Quality, Eutrophication, and Zooplankton Community in Lake Burullus, Egypt. Diversity 2021, 13, 268. [Google Scholar] [CrossRef]
- Beaulieu, S.E.; Sengco, M.R.; Anderson, D.M. Using clay to control harmful algal blooms: Deposition and resuspension of clay/algal flocs. Harmful Algae 2005, 4, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.G. Mitigation and controls of HABs. In Ecology of Harmful Algae; Granéli, E., Turner, J.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 327–338. [Google Scholar]
- Park, T.G.; Lim, W.A.; Park, Y.T.; Lee, C.K.; Jeong, H.J. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 2013, 30, S131–S143. [Google Scholar] [CrossRef]
- Sengco, M.R.; Anderson, D.M. Controlling Harmful Algal Blooms through Clay Flocculation1. J. Eukaryot. Microbiol. 2004, 51, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Song, X.; Cao, X.; Liu, Y. Mitigation of harmful algal blooms using modified clays: Theory, mechanisms, and applications. Harmful Algae 2017, 69, 48–64. [Google Scholar] [CrossRef]
- Yu, Z.; Sengco, M.R.; Anderson, D.M. Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays. J. Appl. Phycol. 2004, 16, 101–110. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Yu, Z.; Song, X.; Qiu, L. Flocculation of harmful algal cells using modified clay: Effects of the properties of the clay suspension. J. Appl. Phycol. 2015, 28, 1623–1633. [Google Scholar] [CrossRef]
- Ren, X.; Yu, Z.; Qiu, L.; Cao, X.; Song, X. Effects of Modified Clay on Phaeocystis globosa Growth and Colony Formation. Int. J. Environ. Res. Public Health 2021, 18, 10163. [Google Scholar] [CrossRef]
- Hagström, J.A.; Sengco, M.R.; Villareal, T.A. Potential Methods for Managing Prymnesium parvum Blooms and Toxicity, with Emphasis on Clay and Barley Straw: A Review1. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 187–198. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Jin, E.; Jung, S.W.; Kim, Y.-M.; Chang, K.S.; Yang, J.-W.; Kim, S.W.; Kim, Y.-O.; Shin, H.-J. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides. Sci. Rep. 2013, 3, 1292. [Google Scholar] [CrossRef] [Green Version]
- Lessard, E.; Murrell, M. Microzooplankton herbivory and phytoplankton growth in the northwestern Sargasso Sea. Aquat. Microb. Ecol. 1998, 16, 173–188. [Google Scholar] [CrossRef]
- Goericke, R.; Welschmeyer, N.A. Response of Sargasso Sea phytoplankton biomass, growth rates and primary production to seasonally varying physical forcing. J. Plankton Res. 1998, 20, 2223–2249. [Google Scholar] [CrossRef] [Green Version]
- De La Rocha, C.L.; Passow, U. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 639–658. [Google Scholar] [CrossRef] [Green Version]
- Zehr, J.P.; Shilova, I.; Farnelid, H.M.; Marin, M.D.C.M.; Turk-Kubo, K.A. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat. Microbiol. 2017, 2, 16214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Station | Depth (m) | Temperature (°C) | Salinity | Chl a (μg L−1) | Ore (Size) |
---|---|---|---|---|---|
A1 | 5 | 29.1 | 34.7 | 0.01 | Polymetallic nodule (<20 μm) |
A2 | 1 | 28.4 | 34.6 | 0.01 | Polymetallic sulfide (20–60 μm) |
Ore Powders (Size) | Mn | Fe | Co | Ni | Cu | Zn | Pb |
---|---|---|---|---|---|---|---|
Polymetallic nodule (<20 μm) | 248,813 (16,968) | 45,825 (3218) | 1760 (119) | 11,924 (815) | 9932 (651) | 1370 (62) | 238 (10) |
Polymetallic sulfide (20–60 μm) | 286 (27) | 321,261 (26,756) | 259 (9) | 7 (0.4) | 27,495 (1107) | 103,905 (3121) | 457 (98) |
Taxonomic Assignment of Representative Reads | Relative Percentage (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Polymetallic Nodule (mg/L) | Polymetallic Sulfide (mg/L) | ||||||||
Phylum | Order | Genus | Control | 10 | 100 | 1000 | Control | 100 | 1000 |
Chlorophyta | Chlorellales | Chlorellaceae_X | 0.0 | 0.9 | 2.1 | 5.5 | 0.0 | 0.1 | 7.7 |
Mamiellales | Bathycoccaceae_X | 0.0 | 0.8 | 6.4 | 8.0 | 0.0 | 0.2 | 8.1 | |
Mamiellales | Mamiellaceae_unc. | 0.1 | 0.3 | 4.9 | 6.4 | 0.1 | 0.3 | 6.4 | |
Mamiellales | Mamiellaceae_X | 0.5 | 1.5 | 20.4 | 29.1 | 0.4 | 0.4 | 30.2 | |
Mamiellales | Micromonas | 0.1 | 0.9 | 7.8 | 1.0 | 0.0 | 0.0 | 1.2 | |
Mamiellales | Ostreococcus | 0.0 | 0.6 | 5.3 | 2.9 | 0.0 | 0.0 | 2.7 | |
Prasino-clade-7 | Prasino-clade-7_X-A4 | 0.4 | 0.7 | 0.0 | 0.0 | 0.2 | 1.5 | 0.2 | |
Prasino-clade-7 | Prasino-clade-7_X-B2 | 0.3 | 3.0 | 0.0 | 0.0 | 0.7 | 3.0 | 0.0 | |
Prasino-clade-9 | Prasino-clade-9_XXX | 4.7 | 7.6 | 0.0 | 0.2 | 0.8 | 4.2 | 0.0 | |
Cryptophyta | Pyrenomonadales | Chroomonadaceae_X | 0.0 | 0.0 | 0.4 | 1.0 | 0.0 | 0.0 | 0.9 |
Pyrenomonadales | Pyrenomonadales_X_unc. | 0.0 | 0.2 | 0.9 | 1.4 | 0.0 | 0.0 | 0.2 | |
Pyrenomonadales | Pyrenomonadales_XXX | 0.1 | 1.5 | 14.9 | 7.9 | 0.1 | 0.5 | 7.2 | |
Haptophyta | Phaeocystales | Phaeocystaceae_unc. | 1.0 | 0.3 | 0.5 | 0.3 | 0.9 | 0.6 | 0.7 |
Phaeocystales | Phaeocystaceae_X | 18.2 | 11.0 | 1.0 | 0.8 | 15.4 | 12.3 | 1.3 | |
Phaeocystales | Phaeocystis | 0.4 | 1.1 | 6.7 | 15.5 | 0.4 | 0.2 | 11.2 | |
Prymnesiales | Chrysochromulinaceae_unc. | 3.8 | 2.8 | 0.4 | 0.1 | 3.9 | 3.5 | 0.3 | |
Prymnesiales | Chrysochromulinaceae_X | 21.0 | 15.0 | 1.6 | 0.7 | 27.1 | 23.7 | 0.9 | |
Prymnesiales | Prymnesiaceae_X | 0.7 | 0.6 | 0.6 | 0.0 | 0.6 | 1.0 | 0.0 | |
Prymnesiales | Prymnesiales_X_unc. | 8.7 | 4.8 | 2.4 | 2.5 | 8.2 | 7.7 | 1.5 | |
Prymnesiophyceae_X_unc. | Prymnesiophyceae_X_unc. | 14.0 | 6.8 | 1.3 | 0.7 | 20.0 | 11.6 | 0.9 | |
Prymnesiophyceae_XX | Braarudosphaeraceae_X | 3.2 | 1.6 | 0.3 | 0.7 | 4.5 | 4.1 | 1.2 | |
Prymnesiophyceae_XX | Prymnesiophyceae_XXX_unc. | 0.7 | 0.8 | 0.0 | 0.0 | 1.1 | 0.2 | 0.0 | |
Ochrophyta | Bacillariophyceae_unc. | Bacillariophyceae_unc. | 1.2 | 1.2 | 0.9 | 0.1 | 1.0 | 1.0 | 0.6 |
Bacillariophyta_unc. | Bacillariophyta_unc. | 0.2 | 0.3 | 2.7 | 1.2 | 0.1 | 0.4 | 0.7 | |
Chaetocerotales | Chaetocerotaceae_unc. | 0.4 | 0.7 | 1.2 | 0.1 | 0.1 | 0.2 | 0.0 | |
Cymatosirales | Cymatosiraceae_X | 0.1 | 1.5 | 5.2 | 6.4 | 0.1 | 0.2 | 7.4 | |
Thalassiosirales | Thalassiosiraceae_X | 0.0 | 0.7 | 4.8 | 1.5 | 0.0 | 0.4 | 1.3 | |
Chrysophyceae_XX | Chrysophyceae_XXXXX | 1.9 | 3.5 | 0.0 | 0.1 | 0.8 | 1.5 | 0.0 | |
Chrysophyceae-Synurophyceae_XX | Chrysophyceae-Synurophyceae_XXXXX | 6.5 | 11.4 | 0.1 | 0.3 | 3.0 | 4.4 | 0.3 | |
Dictyochophyceae_X_unc. | Dictyochophyceae_X_unc. | 0.8 | 1.2 | 0.0 | 0.2 | 0.8 | 2.3 | 0.0 | |
Dictyochophyceae_XX | Dictyochophyceae_XXXXX | 1.3 | 2.0 | 0.3 | 0.2 | 0.8 | 1.6 | 0.7 | |
Eustigmatales | Nannochloropsis | 0.5 | 1.7 | 0.0 | 0.1 | 0.2 | 0.7 | 0.0 | |
Florenciellales | Florenciellales_XXX | 0.1 | 0.2 | 0.7 | 1.1 | 0.0 | 0.0 | 1.3 | |
Ochrophyta_unc. | Ochrophyta_unc. | 3.4 | 5.0 | 0.0 | 0.1 | 3.1 | 4.3 | 0.0 | |
Pelagophyceae_X_unc. | Pelagophyceae_X_unc. | 1.4 | 0.8 | 0.1 | 0.4 | 1.1 | 0.9 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, D.H.; Yoo, J.; Yang, W.; Noh, J.H.; Lee, Y.; Ra, K.; Hyeong, K.; Yoo, C.M.; Park, J. Potential Short-Term Effects of Mine Tailings on Phytoplankton Assemblages in the Open Ocean. J. Mar. Sci. Eng. 2022, 10, 1162. https://doi.org/10.3390/jmse10081162
Choi DH, Yoo J, Yang W, Noh JH, Lee Y, Ra K, Hyeong K, Yoo CM, Park J. Potential Short-Term Effects of Mine Tailings on Phytoplankton Assemblages in the Open Ocean. Journal of Marine Science and Engineering. 2022; 10(8):1162. https://doi.org/10.3390/jmse10081162
Chicago/Turabian StyleChoi, Dong Han, Jangyeon Yoo, Wonseok Yang, Jae Hoon Noh, Yeonjung Lee, Kongtae Ra, Kiseong Hyeong, Chan Min Yoo, and Jisoo Park. 2022. "Potential Short-Term Effects of Mine Tailings on Phytoplankton Assemblages in the Open Ocean" Journal of Marine Science and Engineering 10, no. 8: 1162. https://doi.org/10.3390/jmse10081162
APA StyleChoi, D. H., Yoo, J., Yang, W., Noh, J. H., Lee, Y., Ra, K., Hyeong, K., Yoo, C. M., & Park, J. (2022). Potential Short-Term Effects of Mine Tailings on Phytoplankton Assemblages in the Open Ocean. Journal of Marine Science and Engineering, 10(8), 1162. https://doi.org/10.3390/jmse10081162