Taste Preferences and Orosensory Feed Testing Behavior in Barramundi Lates calcarifer (Latidae, Perciformes)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish and Maintenance
2.2. Preparation of Pellets
2.3. Experimental Procedure
2.4. Statistical Analysis
2.5. Ethical Statement
3. Results
3.1. Background Behavior
3.2. Taste Attractiveness of Basic Taste Substances
3.3. Taste Attractiveness of Amino Acids
3.4. Citric Acid
3.5. Feeding Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pethiyagoda, R.; Gill, A.C. Taxonomy and distribution of Indo-Pacific Lates. In Biology and Culture of Asian Seabass Lates Calcarifer; Jerry, D.R., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 1–15. [Google Scholar]
- Froese, R.; Pauly, D. FishBase Version (02/2022). 2022. Available online: www.fishbase.org (accessed on 1 February 2022).
- Williams, K.C.; Patterson, B.D.; Barlow, C.G.; Rodgers, L.; Ford, A.; Roberts, R. Potential of meat meal to replace fish meal in extruded dry diets for barramundi Lates calcarifer (Bloch). II. Organoleptic characteristics and fatty acid composition. Aquac. Res. 2003, 34, 33–42. [Google Scholar] [CrossRef]
- Carton, A.G.; Jones, B. Post-Harvest Quality in Farmed Lates Calcarifer. In Biology and Culture of Asian Seabass Lates calcarifer; Jerry, D.R., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 229–257. [Google Scholar]
- Richards, D. The Australian Barramundi Farming Industry, Can Australian Barramundi Be the White Fish Equivalent to Salmon? Nufflilds: North Sydney, Australia, 2017; pp. 1–39. Available online: https://www.nuffieldscholar.org/reports/au/2016/australian-barramundi-farming-industry-can-australian-barramundi-be-white-fish (accessed on 1 June 2022).
- FAO; Rimmer, M.A. Lates calcarifer, Cultured Aquatic Species Information Programme. Fisheries and Aquaculture Division [online], Rome. 2022. Updated 19 July 2006. Available online: https://www.fao.org/fishery/en/culturedspecies/lates_calcarifer/en (accessed on 27 August 2022).
- Goddard, S. Feed Management in Intensive Aquaculture; Chapman & Hall: New York, NY, USA, 1996; pp. 1–22. Available online: https://link.springer.com/chapter/10.1007/978-1-4613-1173-7_1 (accessed on 24 July 2022).
- Young, J.A.; Muir, J.F. Economics and Marketing. In Tilapias: Biology and Exploitation; Beveridge, M.C.M., McAndrew, B.J., Eds.; Kluwer Academic Press: Dordrecht, The Netherlands, 2000; pp. 447–487. [Google Scholar] [CrossRef]
- Morais, S. The physiology of taste in fish: Potential implications for feeding stimulation and gut chemical sensing. Rev. Fish. Sci. Aquac. 2017, 25, 133–149. [Google Scholar] [CrossRef]
- Atema, J. Structures and functions of the sense of taste in the catfish. Brain Behav. Evol. 1971, 4, 273–294. [Google Scholar] [CrossRef]
- Kapoor, B.G.; Evans, H.E.; Pevzner, R.A. The Gustatory System in fish. In Advances in Marine Biology; Russel, F.S., Yonge, M., Eds.; Academic Press: New York, NY, USA, 1975; pp. 53–108. [Google Scholar]
- Marui, T.; Caprio, J. Teleost Gustation. In Fish Chemoreception; Hara, T.J., Ed.; Chapman and Hall: London, UK, 1992; pp. 171–198. [Google Scholar] [CrossRef]
- Kasumyan, A.O.; Døving, K.B. Taste Preferences in Fish. Fish Fish. 2003, 4, 289–347. [Google Scholar] [CrossRef]
- Kasumyan, A.O. The taste system in fishes and the effects of environmental variables. J. Fish Biol. 2019, 95, 155–178. [Google Scholar] [CrossRef]
- Takaoka, O.; Takii, K.; Nakamura, M.; Kumai, H.; Takeda, M. Identification of feeding stimulants for tiger puffer. Fish. Sci. 1995, 61, 833–836. [Google Scholar] [CrossRef]
- Papatryphon, E.; Soares, J.H., Jr. Identification of feeding stimulants for striped bass, Morone saxatilis. Aquaculture 2000, 185, 339–352. [Google Scholar] [CrossRef]
- Xue, M.; Cui, Y. Effect of several feeding stimulants on diet preference by juvenile gibel carp (Carassius auratus gibelio), fed diets with or without partial replacement of fish meal by meat and bone meal. Aquaculture 2001, 198, 281–292. [Google Scholar] [CrossRef]
- Zou, Q.; Huang, Y.; Cao, J.; Zhao, H.; Wang, G.; Li, Y.; Pan, Q. Effects of four feeding stimulants in high plant-based diets on feed intake, growth performance, serum biochemical parameters, digestive enzyme activities and appetite-related genes expression of juvenile GIFT tilapia (Oreochromis sp.). Aquac. Nutr. 2017, 23, 1076–1085. [Google Scholar] [CrossRef]
- Kousoulaki, K.; Rønnestad, I.; Rathore, R.; Sixten, H.J.; Campbell, P.; Nordrum, S.; Berge, R.K.; Albrektsen, S. Physiological responses of Atlantic salmon (Salmo salar L.) fed very low (3%) fishmeal diets supplemented with feeding-modulating crystalline amino acid mixes as identified in krill hydrolysate. Aquaculture 2018, 486, 184–196. [Google Scholar] [CrossRef]
- Kasumyan, A.O.; Isaeva, O.M.; Oanh, L.T.K. Taste attractivity of tropical echinoderms for barramundi Lates calcarifer. Aquaculture 2022, 553, 738051. [Google Scholar] [CrossRef]
- Kasumyan, A.; Isaeva, O.; Zvonareva, S. Coloration type of two allied cowries (Ovulidae:Gastropoda) tested through palatability evaluation in feeding experiments with fish. J. Exp. Mar. Biol. Ecol. 2021, 538, 151529. [Google Scholar] [CrossRef]
- Masilan, K.; Neethiselvan, N.; Shakila, R.J.; Karthy, A.; Arisekar, U.; Muralidharan, N.; Ravikumar, T.; Sivaraman, B.; Kalidas, C.; Ranjith, L.; et al. Development of fish gelatin-based artificial fish baits incorporating bioattractants from seafood processing waste. J. Indian Chem. Soc. 2022, 99, 100376. [Google Scholar] [CrossRef]
- Kasumyan, A.O. Behavior and gustatory reception of air-breathing catfishes (Clariidae). J. Ichthyol. 2014, 54, 934–943. [Google Scholar] [CrossRef]
- Lim, L.-S.; Lai, S.-K.J.; Yong, A.S.-K.; Shapawi, R.; Kawamura, G. Evaluation on the potential of betaine, taurine, nucleotide and nucleoside as feeding stimulant for juvenile marble goby Oxyeleotris marmoratus through behavioural assays. Int. Aquat. Res. 2016, 8, 161–167. [Google Scholar]
- Lim, L.-S.; Lai, S.-K.J.; Yong, A.S.-K.; Shapawi, R.; Kawamura, G. Feeding response of marble goby (Oxyeleotris marmorata) to organic acids, amino acids, sugars and some classical taste substances. Appl. Anim. Behav. Sci. 2017, 196, 113–118. [Google Scholar] [CrossRef]
- Vinogradskaya, M.I.; Mikhailova, E.S.; Kasumyan, A.O. Taste preferences, orosensory food testing, and sound production during feeding by the pearl gourami Trichopodus leerii (Osphronemidae). J. Ichthyol. 2017, 57, 445–457. [Google Scholar] [CrossRef]
- Levina, A.D.; Mikhailova, E.S.; Kasumyan, A.O. Taste preferences and feeding behavior in the facultative herbivore fish, Nile tilapia Oreochromis niloticus. J. Fish Biol. 2021, 98, 1385–1400. [Google Scholar] [CrossRef]
- Mikhailova, E.S.; Kasumyan, A.O. Taste preferences and orosensory food testing in three spot gourami Trichopodus trichopterus (Osphronemidae). J. Ichthyol. 2021, 61, 939–954. [Google Scholar] [CrossRef]
- Lim, L.-S.; Chor, W.K.; Tuzan, A.D.; Shapawi, R.; Kawamura, G. Betaine is a feed enhancer for juvenile grouper (Epinephelus fuscoguttatus) as determined behaviourally. J. Appl. Anim. Res. 2016, 44, 415–418. [Google Scholar] [CrossRef]
- Lim, L.S.; Firdaus, R.F.; Shapawi, R.; Kawamura, G. Taste preference of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) for nucleoside and nucleotides. Borneo J. Mar. Sci. Aquac. 2017, 1, 39–43. Available online: http://jurcon.ums.edu.my/ojums/index.php/BJoMSA (accessed on 26 August 2022).
- Kasumyan, A.O. Taste attractiveness of free amino acids and their physicochemical and biological properties (as exemplified by fishes). J. Evol. Biochem. Physiol. 2016, 52, 271–281. [Google Scholar] [CrossRef]
- Kasumyan, A.O.; Morsi, A.M.H. Taste sensitivity of common carp Cyprinus carpio to free amino acids and classical taste substances. J. Ichthyol. 1996, 36, 391–403. [Google Scholar]
- Kasumyan, A.O.; Prokopova, O.M. Taste preferences and the dynamics of behavioral taste response in the tench Tinca tinca (Cyprinidae). J. Ichthyol. 2001, 41, 640–653. [Google Scholar]
- Jafari Shamushaki, V.F.; Abtahi, B.; Kasumyan, A.O.; Abedian Kenari, A.; Ghorbani, R. Taste attractiveness of free amino acids for juveniles of Persian sturgeon Acipenser persicus. J. Ichthyol. 2008, 48, 124–133. [Google Scholar] [CrossRef]
- Kasumyan, A.O.; Nikolaeva, E.V. Comparative analysis of taste preferences in fishes with different ecology and feeding. J. Ichthyol. 2002, 42 (Suppl. 2), S203–S214. [Google Scholar]
- Kasumyan, A.O.; Marusov, E.A. Behavioral responses of intact and chronically anosmiated minnows Phoxinus phoxinus (Cyprinidae) to free amino acids. J. Ichthyol. 2003, 43, 528–538. [Google Scholar]
- Kasumyan, A.O.; Sidorov, S.S. Taste sensitivity of chum salmon Oncorhynchus keta to types of taste stimuli and amino acids. Sens. Syst. 1993, 6, 222–225. [Google Scholar]
- Kasumyan, A.O.; Sidorov, S.S. The palatability of free amino acids and classical taste substances to frolich charr, Salvelinus alpinus erythrinus (Georgi). Nord. J. Freshw. Res. 1995, 71, 320–323. [Google Scholar]
- Kasumyan, A.O.; Sidorov, S.S. Gustatory properties of free amino acids in Caspian trout Salmo trutta caspius. J. Ichthyol. 1995, 35, 8–20. [Google Scholar]
- Kasumyan, A.O.; Sidorov, S.S. Taste preferences and behavior of testing gustatory qualities of food in stone loach Barbatula barbatula (Balitoridae, Cypriniformes). J. Ichthyol. 2010, 50, 682–693. [Google Scholar] [CrossRef]
- Mikhailova, E.S.; Kasumyan, A.O. Taste preferences and feeding behavior in nine-spined stickleback (Pungitius pungitius) in three geographically distant populations. J. Ichthyol. 2015, 55, 679–701. [Google Scholar] [CrossRef]
- Kasumyan, A.O.; Mikhailova, E.S. Taste preferences and feeding behavior of three-spined stickleback Gasterosteus aculeatus of populations of basins of the Atlantic and Pacific oceans. J. Ichthyol. 2014, 54, 453–475. [Google Scholar] [CrossRef]
- Dayal, J.S.; Ali, S.A.; Thirunavukkarasu, A.R.; Kailasam, M.; Subburaj, R. Nutrient and amino acid profiles of egg and larvae of Asian seabass, Lates calcarifer (Bloch). Fish Physiol. Biochem. 2003, 29, 141–147. [Google Scholar] [CrossRef]
- Glencross, B.D. Nutritional management of barramundi, Lates calcarifer—A review. Aquac. Nutr. 2006, 12, 291–309. [Google Scholar] [CrossRef]
- Haefeli, R.J.; Glaser, D. Taste responses and thresholds obtained with primary amino acids in humans. Lebensm. Wiss. Technol. 1990, 23, 523–527. [Google Scholar]
- Kawai, M.; Sekine-Hayakawa, Y.; Okiyama, A.; Ninomiya, Y. Gustatory sensation of L- and D-amino acids in humans. Amino Acids 2012, 43, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
- Kirimura, J.; Simizu, A.; Kimizuka, A.; Ninomiya, T.; Katsuya, N. The contribution of peptides and amino acids to the taste of foodstuffs. J. Agric. Food Chem. 1969, 17, 689–695. [Google Scholar] [CrossRef]
- Frank, H.E.R.; Amato, K.; Trautwein, M.; Maia, P.; Liman, E.R.; Nichols, L.M.; Schwenk, K.; Breslin, P.A.S.; Dunn, R.R. The evolution of sour taste. Proc. R. Soc. B 2022, 289, 20211918. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, S. Versuche zur Geschmacksperzeption einiger Susswasserfische im larvalen und adulten Stadium. Arch. Fischereiwissenschaft 1980, 31, 105–114. [Google Scholar]
- Hidaka, I. Taste Receptor Stimulation and Feeding Behavior in the Puffer. In Chemoreception in Fishes; Hara, T.J., Ed.; Elsevier Scientific Publishing Comp.: Amsterdam, The Netherlands, 1982; pp. 243–257. [Google Scholar]
- Adams, M.A.; Johnsen, P.B.; Zhou, H.Q. Chemical enhancement of feeding for the herbivorous fish Tilapia zillii. Aquaculture 1988, 72, 95–107. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, L.; Wang, D. Effects of several organic acids on the feeding behavior of Tilapia nilotica. J. Appl. Ichthyol. 2003, 19, 255–257. [Google Scholar] [CrossRef]
- Shah, S.Z.H.; Afzal, M.; Khan, S.Y.; Hussain, S.M.; Habib, R.Z. Prospects of using citric acid as fish feed supplement. Int. J. Agric. Biol. 2015, 17, 1–8. Available online: http://www.fspublishers.org (accessed on 24 July 2022).
- Huang, Z.; Ye, Y.; Xu, A.; Li, Z.; Wang, Z. Dietary supplementation with an acidifier blend (citric, lactic, and phosphoric acids) influences growth, digestive enzymes, and blood chemistry of juvenile Japanese sea-bass (Lateolabrax japonicus). Aquac. Internat. 2022, 30, 19–32. [Google Scholar] [CrossRef]
- Mikhailova, E.S.; Kasumyan, A.O. Gustatory characteristics of carboxylic acids for ninespine stickleback Pungitius pungitius. J. Ichthyol. 2018, 58, 580–586. [Google Scholar] [CrossRef]
- Goli, S.; Jafari, V.; Ghorbani, R.; Kasumyan, A. Taste preferences and taste thresholds to classical taste substances in the carnivorous fish, kutum Rutilus frisii kutum (Teleostei: Cyprinidae). Physiol. Behav. 2015, 140, 111–117. [Google Scholar] [CrossRef]
- Russell, D.J. Lates calcarifer wildstocks: Their biology, ecology and fishery. In Biology and Culture of Asian Seabass Lates Calcarifer; Jerry, D.R., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 77–101. [Google Scholar]
- Glencross, B.D.; Wade, N.; Morton, K. Lates calcarifer nutrition and feeding practices. In Biology and Culture of Asian Seabass Lates Calcarifer; Jerry, D.R., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 178–228. [Google Scholar]
- Davis, T.L.O. The food of barramundi, Lates calcarifer (Bloch), in coastal and inland waters of van Diemen Gulf and the Gulf of Carpentaria, Australia. J. Fish Biol. 1985, 26, 669–682. [Google Scholar] [CrossRef]
- Kubitza, F.; Lovshin, L.L. Formulated diets, feeding strategies, and cannibalism control during intensive culture of juvenile carnivorous fishes. Rev. Fish. Sci. 1999, 7, 1–22. [Google Scholar] [CrossRef]
- Hirt-Chabbert, J.A.; Skalli, A.; Young, O.A.; Gisbert, E. Effects of feeding stimulants on the feed consumption, growth and survival at glass eel and elver stages in the European eel (Anguilla anguilla). Aquac. Nutr. 2012, 18, 152–166. [Google Scholar] [CrossRef]
- Boonyaratpalin, M. Nutrient requirements of marine food fish cultured in Southeast Asia. Aquaculture 1997, 151, 283–313. [Google Scholar] [CrossRef]
- Glencross, B.D. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquac. 2009, 1, 71–124. [Google Scholar] [CrossRef]
- DiPatrizio, N.V. Is fat taste ready for primetime? Physiol. Behav. 2014, 136, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Keast, R.; Costanzo, A. Is fat the sixth taste? Evidence and implications. Flavour 2015, 4, 5. Available online: http://www.flavourjournal.com/content/4/1/5 (accessed on 24 July 2022). [CrossRef]
- Roy, J.; Baranek, E.; Mercier, Y.; Larroquet, L.; Surget, A.; Ganot, A.; Sandres, F.; Lanuque, A.; Terrier, F.; Briand, L. Involvement of taste receptors in the oro-sensory perception of nutrients in rainbow trout (Oncorhynchus mykiss) fed diets with different fatty acid profiles. Aquac. Nutr. 2022, 2022, 1152463. [Google Scholar] [CrossRef]
Substance | Number of Pellet Grasps over the Entire Trial | Pellet Retention Time, s | Number of Trials | |
---|---|---|---|---|
After the First Grasp | Over the Entire Trial | |||
Series 1: basic taste substances | ||||
Citric acid, 0.1 M | 1.3 ± 0.1 *** | 9.6 ± 0.4 *** | 10.8 ± 0.4 * | 120 |
Sodium chloride, 0.1 M | 3.8 ± 0.2 | 3.6 ± 0.3 | 12.3 ± 0.6 | 120 |
Calcium chloride, 0.1 M | 4.1 ± 0.2 | 3.2 ± 0.3 ** | 12.3 ± 0.6 | 120 |
Sucrose, 0.1 M | 4.7 ± 0.2 ** | 2.7 ± 0.2 *** | 12.4 ± 0.5 | 120 |
Shrimp water extract,300 g (wet weight)/L | 1.1 ± 0.0 *** | 9.7 ± 0.4 *** | 10.5 ± 0.4 * | 240 |
Control | 3.7 ± 0.2 | 4.2 ± 0.3 | 12.2 ± 0.5 | 120 |
Series 2: amino acids | ||||
Cysteine, 0.1 M | 1.2 ± 0.1 *** | 7.5 ± 0.4 *** | 8.2 ± 0.3 | 120 |
Alanine, 0.1 M | 1.8 ± 0.1 ** | 7.6 ± 0.6 *** | 12.1 ± 0.8 *** | 120 |
Glutamine, 0.1 M | 1.8 ± 0.1 *** | 5.0 ± 0.4 *** | 8.2 ± 0.6 | 120 |
Methionine, 0.1 M | 1.5 ± 0.1 *** | 5.3 ± 0.5 *** | 8.0 ± 0.6 | 120 |
Serine, 0.1 M | 1.5 ± 0.1 *** | 4.0 ± 0.4 *** | 6.0 ± 0.6 ** | 120 |
Proline, 0.1 M | 2.3 ± 0.1 ** | 3.8 ± 0.3 *** | 8.9 ± 0.8 | 120 |
Histidine, 0.1 M | 2.4 ± 0.2 | 3.5 ± 0.4 | 8.1 ± 0.6 | 120 |
Norvaline, 0.1 M | 1.9 ± 0.2 ** | 3.5 ± 0.4 | 6.8 ± 0.8 * | 120 |
Valine, 0.1 M | 1.6 ± 0.1 *** | 3.3 ± 0.3 * | 5.3 ± 0.4 *** | 120 |
Threonine, 0.1 M | 1.5 ± 0.1 *** | 3.7 ± 0.4 * | 5.7 ± 0.5 ** | 120 |
Phenylalanine, 0.1 M | 1.6 ± 0.1 *** | 2.9 ± 0.3 | 5.1 ± 0.4 *** | 120 |
Glycine, 0.1 M | 1.9 ± 0.1 ** | 3.3 ± 0.3 *** | 6.5 ± 0.5 | 120 |
Lysine, 0.1 M | 1.6 ± 0.1 *** | 3.4 ± 0.4 | 5.7 ± 0.5 ** | 120 |
Asparagine, 0.1 M | 2.1 ± 0.2 | 2.7 ± 0.3 | 6.2 ± 0.5 * | 120 |
Arginine, 0.1 M | 1.9 ± 0.1 * | 2.7 ± 0.3 | 5.8 ±0.5 ** | 120 |
Glutamic acid, 0.01 M | 1.9 ± 0.1 * | 3.1 ± 0.3 * | 6.7 ± 0.5 | 120 |
Aspartic acid, 0.01 M | 1.8 ± 0.1 *** | 3.7 ± 0.3 *** | 6.6 ± 0.5 | 120 |
Tryptophan, 0.01 M | 1.7 ± 0.1 ** | 2.2 ± 0.2 | 5.0 ± 0.4 *** | 120 |
Leucine, 0.01 M | 1.8 ± 0.1 *** | 2.1 ± 0.2 | 4.5 ± 0.5 *** | 120 |
Isoleucine, 0.01 M | 1.6 ± 0.1 *** | 1.9 ± 0.2 | 3.8 ± 0.4 *** | 120 |
Tyrosine, 0.001 M | 1.6 ± 0.1 *** | 1.8 ± 0.1 | 4.1 ± 0.4 *** | 120 |
Shrimp water extract,300 g (wet weight)/L | 1.0 ± 0.0 *** | 8.8 ± 0.3 *** | 8.9 ± 0.3 | 240 |
Citric acid, 0.1 M | 1.1 ± 0.0 *** | 9.6 ± 0.7 *** | 10.6 ± 0.6 ** | 96 |
Control | 2.5 ± 0.2 | 2.9 ± 0.3 | 9.0 ± 0.8 | 120 |
Series 3: citric acid | ||||
Citric acid, 0.1 M | 1.7 ± 0.2 *** | 14.5 ± 0.9 *** | 17.0 ± 1.0 *** | 72 |
Citric acid, 0.01 M | 1.8 ± 0.2 ** | 6.3 ± 0.7 *** | 8.9 ± 0.8 | 72 |
Control | 2.8 ± 0.3 | 2.4 ± 0.3 | 8.3 ± 1.0 | 72 |
Fish Species | rs | References |
---|---|---|
Siberian sturgeon, Acipenser baerii 1 | −0.19 | [34] |
Russian sturgeon, Acipenser gueldenstaedtii | 0.10 | [34] |
Persian sturgeon, Acipenser persicus 2 | 0.47 * | [34] |
Stellate sturgeon, Acipenser stellatus | 0.16 | [34] |
Brown trout, Salmo trutta caspius | −0.08 | [39] |
Chum salmon, Oncorhynchus keta | −0.08 | [37] |
Arctic charr, Salvelinus alpinus erythrinus | 0.20 | [38] |
Common carp, Cyprinus carpio | 0.24 | [32] |
European minnow, Phoxinus phoxinus | 0.42 | [36] |
Roach, Rutilus rutilus | −0.06 | [35] |
Tench, Tinca tinca | 0.70 *** | [33] |
Goldfish, Carassius auratus | −0.53 * | [35] |
Stone loach, Barbatula barbatula | 0.17 | [40] |
North African catfish, Clarias gariepinus | 0.85 *** | [23] |
Nine-spined stickleback, Pungitius pungitius 3 | 0.68 *** | [41] |
Three-spined stickleback, Gasterosteus aculeatus 4 | 0.80 *** | [42] |
Guppy, Poecilia reticulata | 0.19 | [35] |
Pearl gourami, Trichopodus leerii | 0.18 | [26] |
Three spot gourami, Trichopodus trichopterus | 0.67 *** | [28] |
Nile tilapia, Oreochromis niloticus | −0.01 | [27] |
Arctic flounder, Liopsetta glacialis | 0.40 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasumyan, A.; Isaeva, O.; Oanh, L.T.K. Taste Preferences and Orosensory Feed Testing Behavior in Barramundi Lates calcarifer (Latidae, Perciformes). J. Mar. Sci. Eng. 2022, 10, 1213. https://doi.org/10.3390/jmse10091213
Kasumyan A, Isaeva O, Oanh LTK. Taste Preferences and Orosensory Feed Testing Behavior in Barramundi Lates calcarifer (Latidae, Perciformes). Journal of Marine Science and Engineering. 2022; 10(9):1213. https://doi.org/10.3390/jmse10091213
Chicago/Turabian StyleKasumyan, Alexander, Olga Isaeva, and Le T. K. Oanh. 2022. "Taste Preferences and Orosensory Feed Testing Behavior in Barramundi Lates calcarifer (Latidae, Perciformes)" Journal of Marine Science and Engineering 10, no. 9: 1213. https://doi.org/10.3390/jmse10091213
APA StyleKasumyan, A., Isaeva, O., & Oanh, L. T. K. (2022). Taste Preferences and Orosensory Feed Testing Behavior in Barramundi Lates calcarifer (Latidae, Perciformes). Journal of Marine Science and Engineering, 10(9), 1213. https://doi.org/10.3390/jmse10091213