On the Non-Gaussianity of Sea Surface Elevations
Abstract
:1. Introduction
- a, more general, Weibull distribution [13],
- a Forristall distribution [1],
- a Naess distribution [14],
- a Boccotti distribution [15],
- a Klopman distribution [16],
- a van Vledder distribution [17],
- a Battjes–Groenendijk distribution [18],
- a Mendez distribution [19], or
- a LoWiSh II distribution [20].
2. Datasets
3. Methodology
- for all where E denotes the expectation function,
- for all where denotes the covariance function and
- for all where denotes the variance.
3.1. Tests for Stationarity
- 1.
- Ljung-Box test [41],
- 2.
- Augmented Dickey-Fuller test [42],
- 3.
- Phillips-Perron test [43] and
- 4.
- kpps test [44].
3.2. Tests for Gaussianity
Random Projection Test
- 1.
- Let
- 2.
- Let be drawn from the distribution Note that
- 3.
- For any the natural numbers, let be the result of multiplying
3.3. False Discovery Rate
4. Results of the Analysis
5. Conclusions
- The sea surface elevations are generally not Gaussian as the time period increases, from time series recorded in just 4 to 10 min to time series recorded in 10 to 21 h.
- In a few of the cases the one-dimensional marginal is Gaussian for small and moderate time periods. For instance, for time series recorded in just 4 to 10 min, in 14 to 30 min and those recorded in 1 to 2 h.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FDR | False discovery rate |
UTC | Coordinated universal time |
iid | independent identically distributed |
Appendix A
Buoy | Start Time (GMT) | End Time (GMT) | ||
---|---|---|---|---|
Date (yyyy-mm-dd) | Time | Date (yyyy-mm-dd) | Time | |
028 | 2021-04-29 | 19:00:00 | 2022-08-20 | 08:59:57 |
029 | 2022-01-26 | 21:00:00 | 2022-08-20 | 08:59:58 |
036 | 2022-05-25 | 23:00:00 | 2022-08-20 | 08:59:58 |
045 | 2022-03-01 | 20:00:00 | 2022-08-20 | 08:59:58 |
067 | 2020-12-02 | 21:00:00 | 2022-08-20 | 08:59:57 |
071 | 2022-08-02 | 19:32:13 | 2022-08-20 | 08:59:58 |
076 | 2022-06-02 | 18:00:00 | 2022-08-20 | 08:59:58 |
092 | 2021-08-04 | 21:00:00 | 2022-08-20 | 08:59:57 |
094 | 2020-10-08 | 21:00:00 | 2022-08-20 | 08:59:57 |
098 | 2022-02-04 | 21:00:00 | 2022-08-20 | 08:59:58 |
100 | 2021-02-19 | 18:00:00 | 2022-08-20 | 08:59:57 |
106 | 2022-01-20 | 23:00:00 | 2022-08-20 | 08:59:58 |
121 | 2021-06-21 | 13:32:13 | 2022-04-10 | 22:59:58 |
132 | 2020-09-15 | 22:30:00 | 2022-03-01 | 01:22:48 |
134 | 2022-01-15 | 15:00:00 | 2022-08-20 | 08:59:58 |
139 | 2021-11-14 | 20:00:00 | 2022-08-20 | 08:59:58 |
142 | 2022-03-02 | 15:00:00 | 2022-05-20 | 08:22:49 |
143 | 2022-08-16 | 23:00:00 | 2022-08-20 | 08:59:58 |
144 | 2021-11-11 | 17:00:00 | 2022-08-20 | 09:29:58 |
147 | 2022-03-21 | 15:00:00 | 2022-08-20 | 08:59:58 |
150 | 2021-11-18 | 15:00:00 | 2022-08-20 | 08:59:58 |
154 | 2021-01-12 | 17:00:00 | 2022-06-27 | 21:59:57 |
157 | 2020-06-20 | 20:00:00 | 2022-08-20 | 08:59:57 |
158 | 2022-07-06 | 02:02:13 | 2022-08-20 | 08:59:58 |
160 | 2022-05-02 | 21:02:13 | 2022-08-20 | 08:59:58 |
162 | 2021-11-20 | 18:00:00 | 2022-08-20 | 08:59:58 |
166 | 2022-05-16 | 21:00:00 | 2022-05-18 | 03:29:58 |
168 | 2022-03-25 | 20:00:00 | 2022-08-20 | 08:59:58 |
171 | 2022-01-14 | 16:00:00 | 2022-05-12 | 07:52:49 |
181 | 2022-08-11 | 21:02:13 | 2022-08-20 | 08:59:58 |
185 | 2022-08-06 | 02:00:00 | 2022-08-20 | 09:29:58 |
188 | 2021-11-03 | 10:23:10 | 2022-08-20 | 09:20:55 |
189 | 2021-10-20 | 20:02:13 | 2022-08-20 | 08:59:58 |
191 | 2021-12-13 | 20:00:00 | 2022-08-20 | 08:59:58 |
192 | 2022-08-04 | 17:00:00 | 2022-08-20 | 08:59:58 |
194 | 2021-11-05 | 15:00:00 | 2022-02-06 | 23:52:49 |
196 | 2022-07-19 | 04:02:13 | 2022-08-20 | 09:29:58 |
197 | 2022-07-19 | 04:02:13 | 2022-08-20 | 08:59:58 |
198 | 2021-06-16 | 21:00:00 | 2022-08-20 | 08:59:57 |
201 | 2021-11-10 | 21:00:00 | 2022-08-20 | 08:59:58 |
202 | 2021-07-21 | 08:02:13 | 2022-05-04 | 23:59:58 |
203 | 2021-05-12 | 19:00:00 | 2022-08-20 | 08:59:57 |
204 | 2021-08-20 | 23:00:00 | 2022-05-10 | 02:52:49 |
209 | 2022-06-10 | 18:32:13 | 2022-08-20 | 08:59:58 |
213 | 2022-03-15 | 17:00:00 | 2022-08-20 | 08:59:58 |
214 | 2022-06-28 | 04:02:13 | 2022-08-20 | 08:59:58 |
215 | 2022-04-14 | 19:00:00 | 2022-08-20 | 08:59:58 |
217 | 2022-08-08 | 23:02:13 | 2022-08-20 | 08:59:58 |
220 | 2022-04-26 | 22:00:00 | 2022-08-20 | 08:59:58 |
222 | 2021-11-15 | 15:00:00 | 2022-08-20 | 08:59:58 |
224 | 2020-07-16 | 15:00:00 | 2022-08-20 | 08:59:57 |
230 | 2022-05-19 | 17:00:00 | 2022-08-20 | 08:59:58 |
239 | 2022-07-17 | 19:05:10 | 2022-08-20 | 09:03:56 |
240 | 2022-07-22 | 19:02:13 | 2022-08-20 | 08:59:58 |
241 | 2022-08-02 | 00:00:00 | 2022-08-20 | 08:29:58 |
243 | 2021-09-13 | 20:00:00 | 2022-08-20 | 08:59:57 |
244 | 2022-03-31 | 04:30:00 | 2022-03-31 | 10:12:49 |
430 | 2022-07-15 | 18:02:13 | 2022-08-20 | 08:59:58 |
433 | 2022-08-05 | 17:00:00 | 2022-08-20 | 08:59:58 |
Buoy | Length | Studied | Buoy | Length | Studied |
---|---|---|---|---|---|
028 | 52,817,065 | 412,278 | 185 | 1,583,018 | 216,438 |
029 | 22,722,218 | 423,968 | 188 | 32,062,463 | 2304 |
036 | 9,557,162 | 458,528 | 189 | 33,569,279 | 6912 |
045 | 18,966,698 | 488,480 | 191 | 27,592,874 | 419,360 |
067 | 69,170,857 | 334,112 | 192 | 1,732,778 | 451,754 |
071 | 1,942,272 | 394,016 | 194 | 20,652,288 | 162,047 |
076 | 8,695,466 | 317,984 | 196 | 3,564,288 | 396,288 |
092 | 42,080,425 | 500,000 | 197 | 3,561,984 | 463,136 |
094 | 75,258,025 | 412,448 | 198 | 47,499,433 | 306,294 |
098 | 21,726,890 | 444,704 | 201 | 31,237,802 | 476,960 |
100 | 60,447,913 | 453,920 | 202 | 31,813,631 | 2304 |
106 | 23,376,554 | 145,322 | 203 | 51,379,369 | 403,232 |
121 | 32,447,231 | 29,952 | 204 | 57,986,303 | 6912 |
132 | 117,484,797 | 14,592 | 209 | 7,808,256 | 426,272 |
134 | 23,966,378 | 474,656 | 213 | 17,432,234 | 446,838 |
139 | 30,800,042 | 347,766 | 214 | 5,884,416 | 301,856 |
142 | 17,403,648 | 10,752 | 215 | 14,109,866 | 481,855 |
143 | 378,026 | 336,554 | 217 | 1,262,592 | 403,232 |
144 | 31,147,946 | 447,008 | 220 | 12,768,938 | 449,142 |
147 | 16,777,898 | 476,960 | 222 | 30,712,490 | 430,880 |
150 | 30,380,714 | 412,448 | 224 | 84,575,400 | 449,312 |
154 | 58,742,953 | 479,264 | 230 | 10,248,362 | 481,568 |
157 | 87,427,752 | 467,574 | 239 | 3,714,125 | 352,544 |
158 | 5,008,896 | 479,264 | 240 | 3,161,088 | 375,584 |
160 | 12,109,824 | 467,744 | 241 | 2,029,994 | 456,224 |
162 | 30,145,706 | 435,488 | 243 | 37,661,353 | 467,744 |
166 | 140,714 | 126,890 | 244 | 52,992 | 29,952 |
168 | 16,312,490 | 453,920 | 430 | 3,939,840 | 426,272 |
171 | 26,015,999 | 205,088 | 433 | 1,622,186 | 410,144 |
181 | 940,032 | 493,088 |
buoy | 028 | 029 | 036 | 045 | 067 | 071 | 076 | 092 | 094 | 098 | 100 |
bandwidtd | 0.04 | 0.12 | 0.05 | 0.04 | 0.06 | 0.08 | 0.07 | 0.04 | 0.06 | 0.08 | 0.04 |
buoy | 106 | 121 | 132 | 134 | 139 | 142 | 143 | 144 | 147 | 150 | 154 |
bandwidtd | 0.1 | 0.14 | 0.08 | 0.03 | 0.09 | 0.13 | 0.02 | 0.03 | 0.01 | 0.03 | 0.04 |
buoy | 157 | 158 | 160 | 162 | 166 | 168 | 171 | 181 | 185 | 191 | 192 |
bandwidtd | 0.04 | 0.01 | 0.03 | 0.05 | 0.07 | 0.05 | 0.11 | 0.02 | 0.06 | 0.04 | 0.03 |
buoy | 194 | 196 | 197 | 198 | 201 | 203 | 209 | 213 | 214 | 215 | 217 |
bandwidtd | 0.13 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.03 | 0.02 | 0.04 | 0.04 |
buoy | 220 | 222 | 224 | 230 | 239 | 240 | 241 | 243 | 244 | 430 | 433 |
bandwidtd | 0.08 | 0.07 | 0.04 | 0.01 | 0.13 | 0.01 | 0.01 | 0.02 | 0.13 | 0.03 | 0.02 |
References
- Forristall, G.Z. On the statistical distribution of wave heights in a storm. J. Geophys. Res. Ocean. 1978, 83, 2353–2358. [Google Scholar] [CrossRef]
- Azaïs, J.M.; León, J.R.; Ortega, J. Geometrical characteristics of Gaussian sea waves. J. Appl. Probab. 2005, 42, 407–425. [Google Scholar] [CrossRef]
- Karmpadakis, I.; Swan, C.; Christou, M. Assessment of wave height distributions using an extensive field database. Coast. Eng. 2020, 157, 103630. [Google Scholar] [CrossRef]
- Haver, S. On the joint distribution of heights and periods of sea waves. Ocean. Eng. 1987, 14, 359–376. [Google Scholar] [CrossRef]
- Mendes, S.; Scotti, A. The Rayleigh-Haring-Tayfun distribution of wave heights in deep water. Appl. Ocean. Res. 2021, 113, 102739. [Google Scholar] [CrossRef]
- Tayfun, M.A. Distribution of Large Wave Heights. J. Waterw. Port Coastal Ocean. Eng. 1990, 116, 686–707. [Google Scholar] [CrossRef]
- Mori, N.; Liu, P.C.; Yasuda, T. Analysis of freak wave measurements in the Sea of Japan. Ocean. Eng. 2002, 29, 1399–1414. [Google Scholar] [CrossRef]
- Stansell, P. Distributions of freak wave heights measured in the North Sea. Appl. Ocean. Res. 2004, 26, 35–48. [Google Scholar] [CrossRef]
- Stansell, P. Distributions of extreme wave, crest and trough heights measured in the North Sea. Ocean. Eng. 2005, 32, 1015–1036. [Google Scholar] [CrossRef]
- Casas-Prat, M.; Holthuijsen, L. Short-term statistics of waves observed in deep water. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Longuet-Higgins, M.S. On the distribution of the heights of sea waves: Some effects of nonlinearity and finite band width. J. Geophys. Res. Ocean. 1980, 85, 1519–1523. [Google Scholar] [CrossRef]
- Jishad, M.; Yadhunath, E.; Seelam, J.K. Wave height distribution in unsaturated surf zones. Reg. Stud. Mar. Sci. 2021, 44, 101708. [Google Scholar] [CrossRef]
- Muraleedharan, G.; Rao, A.; Kurup, P.; Nair, N.U.; Sinha, M. Modified Weibull distribution for maximum and significant wave height simulation and prediction. Coast. Eng. 2007, 54, 630–638. [Google Scholar] [CrossRef]
- Naess, A. On the distribution of crest to trough wave heights. Ocean. Eng. 1985, 12, 221–234. [Google Scholar] [CrossRef]
- Boccotti, P. On Mechanics of Irregular Gravity Waves. Atti Accad. Naz. Lincei Mem. 1989, 19, 110–170. [Google Scholar]
- Klopman, G. Extreme Wave Heights in Shallow Water; Report H2486; WL|Delft Hydraulics: Delft, The Netherlands, 1996. [Google Scholar]
- van Vledder, G.P. Modification of the Glukhovskiy Distribution; Technical Report H1203; Delft Hydraulics: Delft, The Netherlands, 1991. [Google Scholar]
- Battjes, J.A.; Groenendijk, H.W. Wave height distributions on shallow foreshores. Coast. Eng. 2000, 40, 161–182. [Google Scholar] [CrossRef]
- Mendez, F.J.; Losada, I.J.; Medina, R. Transformation model of wave height distribution on planar beaches. Coast. Eng. 2004, 50, 97–115. [Google Scholar] [CrossRef]
- Wu, Y.; Randell, D.; Christou, M.; Ewans, K.; Jonathan, P. On the distribution of wave height in shallow water. Coast. Eng. 2016, 111, 39–49. [Google Scholar] [CrossRef]
- Nieto-Reyes, A. On the Non-Gaussianity of the Height of Sea Waves. J. Mar. Sci. Eng. 2021, 9, 1446. [Google Scholar] [CrossRef]
- Srokosz, M. On the joint distribution of surface elevation and slopes for a nonlinear random sea, with an application to radar altimetry. J. Geophys. Res. Ocean. 1986, 91, 995–1006. [Google Scholar] [CrossRef]
- Srokosz, M.; Longuet-Higgins, M. On the skewness of sea-surface elevation. J. Fluid Mech. 1986, 164, 487–497. [Google Scholar] [CrossRef]
- Hokimoto, T.; Shimizu, K. A non-homogeneous hidden Markov model for predicting the distribution of sea surface elevation. J. Appl. Stat. 2014, 41, 294–319. [Google Scholar] [CrossRef]
- Pena-Sanchez, Y.; Mérigaud, A.; Ringwood, J.V. Short-term forecasting of sea surface elevation for wave energy applications: The autoregressive model revisited. IEEE J. Ocean. Eng. 2018, 45, 462–471. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; Lehner, S. Measurement of 2-D sea surface elevation fields using complex synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1149–1160. [Google Scholar] [CrossRef]
- Collins, C.O.; Lund, B.; Waseda, T.; Graber, H.C. On recording sea surface elevation with accelerometer buoys: Lessons from ITOP (2010). Ocean. Dyn. 2014, 64, 895–904. [Google Scholar] [CrossRef]
- Reichert, K.; Dannenberg, J.; van den Boom, H. X-Band radar derived sea surface elevation maps as input to ship motion forecasting. In Proceedings of the IEEE OCEANS’10, Sydney, NSW, Australia, 24–27 May 2010; pp. 1–7. [Google Scholar]
- Hessner, K.; Reichert, K.; Hutt, B.L. Sea surface elevation maps obtained with a nautical X-Band radar–Examples from WaMoS II stations. In Proceedings of the 10th International Workshop on Wave Hindcasting and Forecasting and Coastal Hazard Symposium, North Shore, Oahu, HI, USA, 11–16 November 2007; pp. 11–16. [Google Scholar]
- Cherneva, Z.; Guedes Soares, C. Non-linearity and non-stationarity of the New Year abnormal wave. Appl. Ocean. Res. 2008, 30, 215–220. [Google Scholar] [CrossRef]
- Rodriguez, G.; Soares, C.G.; Pacheco, M.; Pe´rez-Martell, E. Wave Height Distribution in Mixed Sea States. J. Offshore Mech. Arct. Eng. 2001, 124, 34–40. [Google Scholar] [CrossRef]
- Tayfun, M.A. Narrow-band nonlinear sea waves. J. Geophys. Res. Ocean. 1980, 85, 1548–1552. [Google Scholar] [CrossRef]
- Petrova, P.G.; Aziz Tayfun, M.; Guedes Soares, C. The Effect of Third-Order Nonlinearities on the Statistical Distributions of Wave Heights, Crests and Troughs in Bimodal Crossing Seas. J. Offshore Mech. Arct. Eng. 2013, 135, 021801. [Google Scholar] [CrossRef]
- Nieto-Reyes, A.; Cuesta-Albertos, J.A.; Gamboa, F. A Random-Projection Based Test of Gaussianity for Stationary Processes. Comput. Stat. Data Anal. 2014, 75, 124–141. [Google Scholar] [CrossRef]
- Epps, T.W. Testing That a Stationary Time Series is Gaussian. Ann. Stat. 1987, 15, 1683–1698. [Google Scholar] [CrossRef]
- Lobato, I.; Velasco, C. A simple Test of Normality for Time Series. Econom. Theory 2004, 20, 671–689. [Google Scholar] [CrossRef]
- Benetazzo, A.; Barbariol, F.; Bergamasco, F.; Torsello, A.; Carniel, S.; Sclavo, M. Observation of Extreme Sea Waves in a Space–Time Ensemble. J. Phys. Oceanogr. 2015, 45, 2261–2275. [Google Scholar] [CrossRef]
- Coleman, R. What is a Stochastic Process? In Stochastic Processes; Springer: Dordrecht, The Netherlands, 1974; pp. 1–5. [Google Scholar] [CrossRef]
- Rozanov, Y.A. Stationary Random Processes; Holden-Day: San Francisco, CA, USA, 1967. [Google Scholar]
- Kozachenko, Y.; Pogorilyak, O.; Rozora, I.; Tegza, A. 2-Simulation of Stochastic Processes Presented in the Form of Series. In Simulation of Stochastic Processes with Given Accuracy and Reliability; Kozachenko, Y., Pogorilyak, O., Rozora, I., Tegza, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 71–104. [Google Scholar] [CrossRef]
- Box, G.; Pierce, D.A. Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. J. Am. Stat. Assoc. 1970, 65, 1509–1526. [Google Scholar] [CrossRef]
- Said, S.E.; Dickey, D.A. Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order. Biometrika 1984, 71, 599–607. [Google Scholar] [CrossRef]
- Perron, P. Trends and Random Walks in Macroeconomic Time Series: Further Evidence From a New Approach. J. Econ. Dyn. Control. 1988, 12, 297–332. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How sure Are We that Economic Time Series Have a Unit Root? J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- D’Agostino, R.B.; Stephens, M.A. Goodness-of-fit techniques. Qual. Reliab. Eng. Int. 1986, 3, 71. [Google Scholar] [CrossRef]
- Cuesta-Albertos, J.; del Barrio, E.; Fraiman, R.; Matrán, C. The Random Projection Method in Goodness of Fit for Functional Data. Comput. Stat. Data Anal. 2007, 51, 4814–4831. [Google Scholar] [CrossRef]
- Pitman, J. Combinatorial Stochastic Processes. In Lectures from the 32nd Summer School on Probability Theory Held in Saint-Flour; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Benjamini, Y.; Yekutieli, D. The Control of the False Discovery Rate in Multiple Testing under Dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Rudemo, M. Empirical Choice of Histograms and Kernel Density Estimators. Scand. J. Stat. 1982, 9, 65–78. [Google Scholar]
- Bowman, A.W. An Alternative Method of Cross-Validation for the Smoothing of Density Estimates. Biometrika 1984, 71, 353–360. [Google Scholar] [CrossRef]
Buoy | Latitude | Longitude | Buoy | Latitude | Longitude |
---|---|---|---|---|---|
028 | 33.86° | −118.64° | 185 | 36.7° | −122.34° |
029 | 37.94° | −123.46° | 188 | 19.78° | −154.97° |
036 | 46.86° | −124.24° | 189 | −14.27° | −170.5° |
045 | 33.18° | −117.47° | 191 | 32.52° | −117.43° |
067 | 33.22° | −119.87° | 192 | 35.75° | −75.33° |
071 | 34.45° | −120.78° | 194 | 30° | −81.08° |
076 | 35.2° | −120.86° | 196 | 13.68° | 144.81° |
092 | 33.62° | −118.32° | 197 | 15.27° | 145.66° |
094 | 40.29° | −124.73° | 198 | 21.48° | −157.75° |
098 | 21.41° | −157.68° | 201 | 32.87° | −117.27° |
100 | 32.93° | −117.39° | 202 | 22.28° | −159.57° |
106 | 21.67° | −158.12° | 203 | 33.77° | −119.56° |
121 | 13.35° | 144.79° | 204 | 59.6° | −151.83° |
132 | 30.71° | −81.29° | 209 | 39.77° | −73.77° |
134 | 27.55° | −80.22° | 213 | 33.58° | −118.18° |
139 | 43.77° | −124.55° | 214 | 27.59° | −82.93° |
142 | 37.79° | −122.63° | 215 | 33.7° | −118.2° |
143 | 28.4° | −80.53° | 217 | 34.21° | −76.95° |
144 | 27.34° | −84.27° | 220 | 32.75° | −117.5° |
147 | 36.92° | −75.72° | 222 | 34.77° | −121.5° |
150 | 34.14° | −77.72° | 224 | 37.75° | −75.33° |
154 | 40.97° | −71.13° | 230 | 48.03° | −87.73° |
157 | 36.33° | −122.1° | 239 | 20.75° | −157° |
158 | 36.63° | −121.91° | 240 | 37.02° | −76.15° |
160 | 42.8° | −70.17° | 241 | 64.47° | −165.48° |
162 | 46.22° | −124.13° | 243 | 36° | −75.42° |
166 | 50.03° | −145.2° | 244 | 24.41° | −81.97° |
168 | 40.9° | −124.36° | 430 | 36.26° | −75.59° |
171 | 36.61° | −74.84° | 433 | 36.2° | −75.71° |
181 | 18.38° | −67.28° |
Length | UTC | GMT | ||
---|---|---|---|---|
General | B | General | B | |
647.17 s | 260.23 s | 10.79 min | 4.34 min | |
2.5 × | 1819.04 s | 846.1719 s | 30.32 min | 14.10 min |
7678.42 s | 3775.86 s | 2.13 h | 1.05 h | |
2 × | 15,490.92 s | 7682.11 s | 4.30 h | 2.13 h |
4 × | 31,115.92 s | 15,494.61 s | 8.64 h | 4.30 h |
6 × | 46,740.92 s | 23,307.11 s | 12.98 h | 6.47 h |
8 × | 62,365.92 s | 31,119.61 s | 17.32 h | 8.64 h |
77,990.92 s | 38,932.11 s | 21.66 h | 10.81 h |
Time Period | Tests | ||||
---|---|---|---|---|---|
General | B | Augmented Dickey-Fuller | Phillips-Perron | Ljung-Box | kpps |
10.79 min | 4.34 min | <0.01 | <0.01 | 8.66 × | >0.1 |
30.32 min | 14.10 min | <0.01 | <0.01 | 6.09 × | >0.1 |
2.13 h | 1.05 h | <0.01 | <0.01 | 1.48 × | >0.1 |
4.30 h | 2.13 h | <0.01 | <0.01 | 0 | >0.1 |
8.64 h | 4.30 h | <0.01 | <0.01 | 2.60 × | >0.1 |
12.98 h | 6.47 h | <0.01 | <0.01 | 0 | >0.1 |
17.32 h | 8.64 h | <0.01 | <0.01 | 0.18 | >0.1 |
21.66 h | 10.81 h | <0.01 | <0.01 | 0.36 | >0.1 |
Buoy | Epps | L.-V. | FDR | Buoy | Epps | L.-V. | FDR |
---|---|---|---|---|---|---|---|
028 | 0.91 | 0.05 | 0.09 | 171 | 0.66 | 7.14 × | 1.43 × 10−10 |
029 | 0.42 | 0.61 | 0.61 | 181 | 1.61 × | 1.54 × | 3.07 × 10−4 |
036 | 0.15 | 0.14 | 0.15 | 185 | 0.91 | 0.6 | 0.91 |
045 | 0.97 | 0.28 | 0.56 | 191 | 0.52 | 0.31 | 0.52 |
067 | 0.28 | 0.15 | 0.28 | 192 | 0.88 | 0.07 | 0.14 |
071 | 0.47 | 0.61 | 0.61 | 194 | 8.07 × | 2.76 × | 5.53 × 10−9 |
076 | 0.20 | 0.24 | 0.24 | 196 | 0.07 | 0.35 | 0.15 |
092 | 0.09 | 0.01 | 0.03 | 197 | 0.81 | 0.16 | 0.33 |
094 | 0.87 | 0.27 | 0.54 | 198 | 0.49 | 1.58 × | 3.17 × 10−4 |
098 | 0.39 | 0.79 | 0.77 | 201 | 0.01 | 0.31 | 0.02 |
100 | 0.58 | 0.99 | 0.99 | 203 | 0.93 | 0.74 | 0.93 |
106 | 3.29 × | 0.02 | 6.58 × 10−4 | 209 | 0.73 | 0.01 | 0.01 |
121 | 0.41 | 1.43 × | 2.86 × 10−6 | 213 | 0.43 | 0.42 | 0.43 |
132 | 0.08 | 3.08 × | 6.16 × 10−11 | 214 | 0.04 | 6.35 × | 1.27 × 10−5 |
134 | 0.76 | 0.76 | 0.76 | 215 | 0.81 | 0.04 | 0.09 |
139 | 0.82 | 0.22 | 0.43 | 217 | 0.03 | 0.00 | 0.01 |
142 | 3.56 × | 1.59 × | 3.18 × 10−8 | 220 | 0.56 | 0.77 | 0.77 |
143 | 0.02 | 1.49 × | 2.98 × 10−4 | 222 | 0.86 | 0.60 | 0.86 |
144 | 0.01 | 5.51 × | 1.10 × 10−3 | 224 | 0.01 | 3.13 × | 6.27 × 10−9 |
147 | 0.48 | 0.36 | 0.48 | 230 | 0.66 | 0.04 | 0.09 |
150 | 0.33 | 0.47 | 0.47 | 239 | 0.22 | 0.77 | 0.44 |
154 | 0.63 | 0.06 | 0.11 | 240 | 0.74 | 0.64 | 0.74 |
157 | 0.16 | 0.45 | 0.33 | 241 | 0.10 | 0.20 | 0.19 |
158 | 0.60 | 0.67 | 0.67 | 243 | 0.06 | 0.01 | 0.01 |
160 | 0.18 | 0.02 | 0.04 | 244 | 0.51 | 0.02 | 0.04 |
162 | 0.92 | 0.20 | 0.40 | 430 | 0.17 | 0.32 | 0.32 |
166 | 0.68 | 6.87 × | 1.37 × 10−3 | 433 | 0.19 | 0.08 | 0.15 |
168 | 0.72 | 0.96 | 0.96 |
Buoy | Epps (100,1) | Epps (2,7) | L.-V. (100,1) | L.-V. (2,7) | FDR |
---|---|---|---|---|---|
028 | 0.89 | 0.62 | 0.04 | 0.01 | 0.04 |
029 | 0.42 | 0.46 | 0.61 | 0.65 | 0.65 |
036 | 0.20 | 0.26 | 0.16 | 0.26 | 0.26 |
045 | 0.98 | 0.98 | 0.27 | 0.26 | 0.81 |
067 | 0.34 | 0.26 | 0.15 | 0.16 | 0.34 |
071 | 0.46 | 0.53 | 0.62 | 0.78 | 0.78 |
076 | 0.21 | 0.73 | 0.24 | 0.62 | 0.73 |
094 | 0.87 | 0.81 | 0.27 | 0.76 | 0.87 |
098 | 0.39 | 0.56 | 0.79 | 0.85 | 0.85 |
100 | 0.62 | 0.84 | 1.00 | 1.00 | 1.00 |
134 | 0.72 | 0.24 | 0.76 | 0.32 | 0.76 |
139 | 0.80 | 0.56 | 0.24 | 0.39 | 0.80 |
147 | 0.54 | 0.75 | 0.36 | 0.55 | 0.75 |
150 | 0.19 | 0.53 | 0.48 | 0.61 | 0.61 |
154 | 0.60 | 0.50 | 0.07 | 0.29 | 0.30 |
157 | 0.19 | 0.16 | 0.43 | 0.52 | 0.52 |
158 | 0.59 | 0.51 | 0.69 | 0.76 | 0.76 |
162 | 0.91 | 0.98 | 0.19 | 0.24 | 0.72 |
168 | 0.73 | 0.76 | 0.96 | 0.87 | 0.96 |
185 | 0.91 | 0.77 | 0.60 | 0.60 | 0.91 |
191 | 0.50 | 0.47 | 0.33 | 0.63 | 0.63 |
192 | 0.69 | 0.09 | 0.08 | 0.08 | 0.18 |
196 | 0.10 | 0.32 | 0.36 | 0.45 | 0.39 |
197 | 0.58 | 0.07 | 0.14 | 0.01 | 0.04 |
203 | 0.93 | 0.95 | 0.74 | 0.72 | 0.95 |
213 | 0.43 | 0.65 | 0.42 | 0.87 | 0.87 |
215 | 0.67 | 0.50 | 0.05 | 0.11 | 0.19 |
220 | 0.60 | 0.88 | 0.78 | 0.35 | 0.88 |
222 | 0.84 | 0.62 | 0.59 | 0.64 | 0.84 |
230 | 0.79 | 0.83 | 0.02 | 0.08 | 0.08 |
239 | 0.22 | 0.29 | 0.77 | 0.79 | 0.79 |
240 | 0.78 | 0.93 | 0.76 | 0.96 | 0.96 |
241 | 0.11 | 0.18 | 0.26 | 0.11 | 0.26 |
430 | 0.21 | 0.41 | 0.34 | 0.63 | 0.63 |
433 | 0.31 | 0.72 | 0.14 | 0.65 | 0.58 |
General | 10.79 m | 30.32 m | 2.13 h | 4.30 h | 8.64 h | 12.98 h | 17.32 h | 21.66 h | |
Time Period | B | 4.34 m | 14.10 m | 1.05 h | 2.13 h | 4.30 h | 6.47 h | 8.64 h | 10.81 h |
no projection | 15.25 | 19.30 | 36.36 | 58.49 | 78.43 | 80.39 | 90.20 | 96.08 | |
witd projection | 22.03 | 22.81 | 40.00 | 58.49 | 78.43 | 82.35 | 92.16 | 96.08 | |
minimum | 30.51 | 24.56 | 43.64 | 66.04 | 80.39 | 82.35 | 92.16 | 96.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-Reyes, A. On the Non-Gaussianity of Sea Surface Elevations. J. Mar. Sci. Eng. 2022, 10, 1303. https://doi.org/10.3390/jmse10091303
Nieto-Reyes A. On the Non-Gaussianity of Sea Surface Elevations. Journal of Marine Science and Engineering. 2022; 10(9):1303. https://doi.org/10.3390/jmse10091303
Chicago/Turabian StyleNieto-Reyes, Alicia. 2022. "On the Non-Gaussianity of Sea Surface Elevations" Journal of Marine Science and Engineering 10, no. 9: 1303. https://doi.org/10.3390/jmse10091303
APA StyleNieto-Reyes, A. (2022). On the Non-Gaussianity of Sea Surface Elevations. Journal of Marine Science and Engineering, 10(9), 1303. https://doi.org/10.3390/jmse10091303