Evaluating the Readiness of Ships and Ports to Bunker and Use Alternative Fuels: A Case Study from Brazil
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Physical and Chemical Properties
3.2. Bunkering
3.3. Storage and Fuel Feeding
3.4. Energy Converters
3.5. Technological Readiness
3.6. Summary of Results
4. Case Study
4.1. Main Port Profiles and Future Hubs
4.2. Fleet and Cargo Profile: Challenges and Progress in Conversion to Alternative Fuel Use
4.3. Thermal Stability of Fuels in the Main Routes
4.4. Fleet Profile: Loss of Cargo Space
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Net zero emissions are achieved when human caused GHG emissions are balanced globally by human induced removals of CO2 on a global scale during a defined period [10]. |
References
- Longarela-Ares, Á.; Calvo-Silvosa, A.; Pérez-López, J.B. The Influence of Economic Barriers and Drivers on Energy Efficiency Investments in Maritime Shipping, from the Perspective of the Principal-Agent Problem. Sustainability 2020, 12, 7943. [Google Scholar] [CrossRef]
- United Nations. The First Global Integrated Marine Assessment; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781316510018. [Google Scholar]
- Faber, J.; Hanayama, S.; Zhang, S.; Pereda, P.; Comer, B.; Hauerhof, E.; van der Loeff, W.S.; Smith, T.; Zhang, Y.; Kosaka, H.; et al. Fourth IMO GHG Study 2020; IMO: London, UK, 2020. [Google Scholar]
- Smith, T.W.P.; Jalkanen, J.P.; Anderson, B.A.; Corbett, J.J.; Faber, J.; Hanayama, S.; O’Keeffe, E.; Parker, S.; Johansson, L.; Aldous, L.; et al. Third IMO GHG Study 2014; IMO: London, UK, 2014. [Google Scholar]
- Nepomuceno de Oliveira, M.A.; Szklo, A.; Castelo Branco, D.A. Implementation of Maritime Transport Mitigation Measures According to Their Marginal Abatement Costs and Their Mitigation Potentials. Energy Policy 2022, 160, 112699. [Google Scholar] [CrossRef]
- Lagouvardou, S.; Psaraftis, H.N.; Zis, T. A Literature Survey on Market-Based Measures for the Decarbonization of Shipping. Sustainability 2020, 12, 3953. [Google Scholar] [CrossRef]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-Art Technologies, Measures, and Potential for Reducing GHG Emissions from Shipping—A Review. Transp. Res. Part D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Maritime Knowledge Centre; TNO; TU Delft. Final Report—Framework CO2 Reduction in Shipping; Maritime Knowledge Centre: Wageningen, The Netherlands, 2017. [Google Scholar]
- Serra, P.; Fancello, G. Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping. Sustainability 2020, 12, 3220. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; ISBN 9781009157940. [Google Scholar]
- IMO. 2023 IMO Strategy on Reduction of GHG Emissions from Ships. Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/annex/2023 IMO Strategy on Reduction of GHG Emissions from Ships.pdf (accessed on 1 August 2023).
- IMO. Adoption of the Initial IMO Strategy on Reduction of GHG Emissions from Ships and Existing IMO Activity Related to Reducing GHG Emissions in the Shipping Sector; IMO: London, UK, 2018. [Google Scholar]
- DNV. GL Maritime Forecast To 2050; DNV: Bayrum, Norway, 2019. [Google Scholar]
- IPCC. Climate Change 2014—Synthesys Report; IPCC: Geneva, Switzerland, 2015; ISBN 978-92-9169-143-2. [Google Scholar]
- Bengtsson, S.; Andersson, K.; Fridell, E. A Comparative Life Cycle Assessment of Marine Fuels: Liquefied Natural Gas and Three Other Fossil Fuels. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 97–110. [Google Scholar] [CrossRef]
- IMO. MEPC.1/Circ.795/Rev.6: Unified Interpretations to MARPOL Annex VI; IMO: London, UK, 2022. [Google Scholar]
- Mærsk Mc-Kinney Møller Center. Using Bio-Diesel Onboard Vessels: An Overview of Fuel Handling and Emission Management Considerations; Mærsk Mc-Kinney Møller Center: København, Denmark, 2023. [Google Scholar]
- ABS. Biofuels as Marine Fuel; ABS: Houston, TX, USA, 2021. [Google Scholar]
- Florentinus, A.; Hamelinck, C.; van den Bos, A.; Winkel, R.; Maarten, C. Potential of Biofuels for Shipping; Ecofys: Utrecht, The Netherlands, 2012. [Google Scholar]
- IEA. Biofuels for the Marine Shipping Sector: An Overview and Analysis of Sector Infrastructure, Fuel Technologies and Regulations. Available online: https://www.ieabioenergy.com/wp-content/uploads/2018/02/Marine-biofuel-report-final-Oct-2017.pdf (accessed on 25 November 2020).
- Winnes, H.; Fridell, E.; Hansson, J.; Jivén, K. Biofuels for Low Carbon Shipping; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2019. [Google Scholar]
- Laursen, R.; Barcarolo, D.; Patel, H.; Dowling, M.; Penfold, M.; Faber, J.; Király, J.; van der Ven, R.; Pang, E.; van Grinsven, A. Update on Potential of Biofuels in Shipping; EMSA: Lisbon, Portugal, 2022. [Google Scholar]
- ABS. Ammonia as Marine Fuel; ABS: Houston, TX, USA, 2020. [Google Scholar]
- ABS. Hydrogen as Marine Fuel; ABS: Houston, TX, USA, 2021. [Google Scholar]
- Ash, N.; Scarbrough, T. Sailing on Solar. Could Green Ammonia Decarbonise International Shipping? Environmental Defense Fund: London, UK, 2019. [Google Scholar]
- Earl, T.; Ambel, C.C.; Hemmings, B.; Gilliam, L.; Abbasov, F.; Officer, S. Roadmap to Decarbonising European Shipping; Transport & Environment: Brussels, Belgium, 2018. [Google Scholar]
- Hansson, J.; Brynolf, S.; Fridell, E.; Lehtveer, M. The Potential Role of Ammonia as Marine Fuel-Based on Energy Systems Modeling and Multi-Criteria Decision Analysis. Sustainability 2020, 12, 3265. [Google Scholar] [CrossRef]
- ABS. LNG as Marine Fuel; ABS: Houston, TX, USA, 2021. [Google Scholar]
- Boulougouris, E.K.; Chrysinas, L.E. LNG Fueled Vessels Design Training; University of Strathclyde: Glasgow, UK, 2015. [Google Scholar]
- Ge, J.; Wang, X. Techno-Economic Study of LNG Diesel Power (Dual Fuel) Ship. WMU J. Marit. Aff. 2017, 16, 233–245. [Google Scholar] [CrossRef]
- Ellis, J.; Tanneberger, K. Study on the Use of Ethyl and Methyl Alcohol as Alternative Fuels in Shipping; EMSA: Lisbon, Portugal, 2015. [Google Scholar]
- ABS. Methanol as Marine Fuel; ABS: Houston, TX, USA, 2021. [Google Scholar]
- MAN Diesel & Turbo. Using Methanol Fuel in the MAN B&W ME-LGI Series; MAN Energy Solutions: Augsburg, Germany, 2014. [Google Scholar]
- Rachow, M.; Loest, S.; Bramastha, A.D. Analysis of the Requirement for the Ships Using Methanol as Fuel. Int. J. Mar. Eng. Innov. Res. 2018, 3, 58–68. [Google Scholar] [CrossRef]
- Müller-Casseres, E.; Carvalho, F.; Nogueira, T.; Fonte, C.; Império, M.; Poggio, M.; Wei, H.K.; Portugal-Pereira, J.; Rochedo, P.R.R.; Szklo, A.; et al. Production of Alternative Marine Fuels in Brazil: An Integrated Assessment Perspective. Energy 2021, 219, 119444. [Google Scholar] [CrossRef]
- Tanzer, S.E.; Posada, J.; Geraedts, S.; Ramírez, A. Lignocellulosic Marine Biofuel: Technoeconomic and Environmental Assessment for Production in Brazil and Sweden. J. Clean. Prod. 2019, 239, 117845. [Google Scholar] [CrossRef]
- Carvalho, F.; Portugal-pereira, J.; Junginger, M.; Szklo, A. Biofuels for Maritime Transportation: A Spatial, Techno-economic, and Logistic Analysis in Brazil, Europe, South Africa, and the Usa. Energies 2021, 14, 4980. [Google Scholar] [CrossRef]
- Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the Transport Sector: A Review of Production Costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905. [Google Scholar] [CrossRef]
- Brynolf, S.; Fridell, E.; Andersson, K. Environmental Assessment of Marine Fuels: Liquefied Natural Gas, Liquefied Biogas, Methanol and Bio-Methanol. J. Clean. Prod. 2014, 74, 86–95. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Alternative Fuel Options for Low Carbon Maritime Transportation: Pathways to 2050. J. Clean. Prod. 2021, 297, 126651. [Google Scholar] [CrossRef]
- Harahap, F.; Nurdiawati, A.; Conti, D.; Leduc, S.; Urban, F. Renewable Marine Fuel Production for Decarbonised Maritime Shipping: Pathways, Policy Measures and Transition Dynamics. J. Clean. Prod. 2023, 415, 137906. [Google Scholar] [CrossRef]
- Bengtsson, S.; Fridell, E.; Andersson, K. Environmental Assessment of Two Pathways towards the Use of Biofuels in Shipping. Energy Policy 2012, 44, 451–463. [Google Scholar] [CrossRef]
- Gilbert, P.; Walsh, C.; Traut, M.; Kesieme, U.; Pazouki, K.; Murphy, A. Assessment of Full Life-Cycle Air Emissions of Alternative Shipping Fuels. J. Clean. Prod. 2018, 172, 855–866. [Google Scholar] [CrossRef]
- Huang, J.; Fan, H.; Xu, X.; Liu, Z. Life Cycle Greenhouse Gas Emission Assessment for Using Alternative Marine Fuels: A Very Large Crude Carrier (VLCC) Case Study. J. Mar. Sci. Eng. 2022, 10, 1969. [Google Scholar] [CrossRef]
- Mohd Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as Alternative Fuel for Marine Diesel Engine Applications: A Review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- Bilgili, L. A Systematic Review on the Acceptance of Alternative Marine Fuels. Renew. Sustain. Energy Rev. 2023, 182, 113367. [Google Scholar] [CrossRef]
- Paulauskiene, T.; Bucas, M.; Laukinaite, A. Alternative Fuels for Marine Applications: Biomethanol-Biodiesel-Diesel Blends. Fuel 2019, 248, 161–167. [Google Scholar] [CrossRef]
- Deniz, C.; Zincir, B. Environmental and Economical Assessment of Alternative Marine Fuels. J. Clean. Prod. 2016, 113, 438–449. [Google Scholar] [CrossRef]
- Carvalho, F.; Müller-Casseres, E.; Poggio, M.; Nogueira, T.; Fonte, C.; Wei, H.K.; Portugal-Pereira, J.; Rochedo, P.R.R.; Szklo, A.; Schaeffer, R. Prospects for Carbon-Neutral Maritime Fuels Production in Brazil. J. Clean. Prod. 2021, 326, 129385. [Google Scholar] [CrossRef]
- Gray, N.; McDonagh, S.; O’Shea, R.; Smyth, B.; Murphy, J.D. Decarbonising Ships, Planes and Trucks: An Analysis of Suitable Low-Carbon Fuels for the Maritime, Aviation and Haulage Sectors. Adv. Appl. Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives. Sustainability 2021, 13, 1213. [Google Scholar] [CrossRef]
- ANTAQ Anuário ANTAQ. Available online: http://web.antaq.gov.br/ANUARIO/ (accessed on 24 June 2021).
- Ministério da Indústria, C.E.eS. Exportação e Importação Geral. Available online: http://comexstat.mdic.gov.br/pt/geral (accessed on 10 May 2023).
- Tagomori, I.S.; Rochedo, P.R.R.; Szklo, A. Techno-Economic and Georeferenced Analysis of Forestry Residues-Based Fischer-Tropsch Diesel with Carbon Capture in Brazil. Biomass Bioenergy 2019, 123, 134–148. [Google Scholar] [CrossRef]
- He, Z.; Cui, M.; Qian, Q.; Zhang, J.; Liu, H.; Han, B. Synthesis of Liquid Fuel via Direct Hydrogenation of CO2. Proc. Natl. Acad. Sci. USA 2019, 116, 12654–12659. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.; Müller-Casseres, E.; Portugal-Pereira, J.; Junginger, M.; Szklo, A. Lignocellulosic Biofuels Use in the International Shipping: The Case of Soybean Trade from Brazil and the U.S. to China. Clean. Prod. Lett. 2023, 4, 100028. [Google Scholar] [CrossRef]
- DNV. GL Comparison of Alternative Marine Fuels; DNV: Bayrum, Norway, 2019. [Google Scholar]
- US Department of Energy. Technology Readiness Assessment Guide; US Department of Energy: Washington, DC, USA, 2011.
- Mestemaker, I.B.T.W.; Van Biert, L.; Visser, I.K. The Maritime Energy Transition from a Shipbuilder’s Perspective. In Proceedings of the International Naval Engineering Conference (iNEC 2020), Delft, The Netherlands, 6–8 October 2020. [Google Scholar]
- Russo, D.; Dassisti, M.; Lawlor, V.; Olabi, A.G. State of the Art of Biofuels from Pure Plant Oil. Renew. Sustain. Energy Rev. 2012, 16, 4056–4070. [Google Scholar] [CrossRef]
- Jiménez Espadafor, F.; Torres García, M.; Becerra Villanueva, J.; Moreno Gutiérrez, J. The Viability of Pure Vegetable Oil as an Alternative Fuel for Large Ships. Transp. Res. Part D Transp. Environ. 2009, 14, 461–469. [Google Scholar] [CrossRef]
- Kesieme, U.; Pazouki, K.; Murphy, A.; Chrysanthou, A. Biofuel as an Alternative Shipping Fuel: Technological, Environmental and Economic Assessment. Sustain. Energy Fuels 2019, 3, 899–909. [Google Scholar] [CrossRef]
- Mallouppas, G.; Yfantis, E.A. Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals. J. Mar. Sci. Eng. 2021, 9, 415. [Google Scholar] [CrossRef]
- British Standard ISO/FDIS 8217; Petroleum Products—Fuels (Class F)—Specifications of Marine Fuels. ISO: Geneva, Switzerland, 2012; p. 42.
- Taylor, D.A. Introduction to Marine Engineering, 2nd ed.; Elsevier, Ed.; Elsevier: Oxford, UK, 1996; ISBN 0-7506-2530-9. [Google Scholar]
- Tiwari, A. Converting a Diesel Engine to Dual-Fuel Engine Using Natural Gas. Int. J. Energy Sci. Eng. 2015, 1, 163–169. [Google Scholar] [CrossRef]
- Bhavani, K.; Murugesan, S. Diesel to Dual Fuel Conversion Process Development. Int. J. Eng. Technol. 2018, 7, 306–310. [Google Scholar] [CrossRef]
- De-Troya, J.J.; Álvarez, C.; Fernández-Garrido, C.; Carral, L. Analysing the Possibilities of Using Fuel Cells in Ships. Int. J. Hydrogen Energy 2016, 41, 2853–2866. [Google Scholar] [CrossRef]
- Burel, F.; Taccani, R.; Zuliani, N. Improving Sustainability of Maritime Transport through Utilization of Liquefied Natural Gas (LNG) for Propulsion. Energy 2013, 57, 412–420. [Google Scholar] [CrossRef]
- Ushakov, S.; Lefebvre, N. Assessment of Hydrotreated Vegetable Oil (HVO) Applicability as an Alternative Marine Fuel Based on Its Performance and Emissions Characteristics. SAE Int. J. Fuels Lubr. 2019, 12, 4–12. [Google Scholar] [CrossRef]
- Mendes, F.L.; da Silva, V.T.; Pacheco, M.E.; Toniolo, F.S.; Henriques, C.A. Bio-Oil Hydrotreating Using Nickel Phosphides Supported on Carbon-Covered Alumina. Fuel 2019, 241, 686–694. [Google Scholar] [CrossRef]
- Ammar, N.R. An Environmental and Economic Analysis of Methanol Fuel for a Cellular Container Ship. Transp. Res. Part D Transp. Environ. 2019, 69, 66–76. [Google Scholar] [CrossRef]
- Kim, K.; Roh, G.; Kim, W.; Chun, K. A Preliminary Study on an Alternative Ship Propulsion System Fueled by Ammonia: Environmental and Economic Assessments. J. Mar. Sci. Eng. 2020, 8, 183. [Google Scholar] [CrossRef]
- Veses, A.; Martínez, J.D.; Callén, M.S.; Murillo, R.; García, T. Application of Upgraded Drop-in Fuel Obtained from Biomass Pyrolysis in a Spark Ignition Engine. Energies 2020, 13, 89. [Google Scholar] [CrossRef]
- PETROBRAS. Combustíveis Marítimos; PETROBRAS: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Kass, M.; Abdullah, Z.; Biddy, M.; Drennan, C.; Hawkins, T.; Jones, S.; Holladay, J.; Longman, D.; Newes, E.; Theiss, T.; et al. Understanding the Opportunities of Biofuels for Marine Shipping; Oak Ridge National Laboratory: Springfield, VA, USA, 2018. [Google Scholar]
- Bart, J.C.J.; Palmeri, N.; Cavallaro, S. Vegetable Oil Formulations for Utilisation as Biofuels. Biodiesel Sci. Technol. 2010, 4, 114–129. [Google Scholar] [CrossRef]
- Nguyen, T.A. Sustainability Assessment of Inedible Vegetable Oil-Based Biodiesel for Cruise Ship Operation in Ha Long Bay, Vietnam; Osaka Prefecture University: Gakuencho, Japan, 2017. [Google Scholar]
- Blin, J.; Brunschwig, C.; Chapuis, A.; Changotade, O.; Sidibe, S.S.; Noumi, E.S.; Girard, P. Characteristics of Vegetable Oils for Use as Fuel in Stationary Diesel Engines—Towards Specifications for a Standard in West Africa. Renew. Sustain. Energy Rev. 2013, 22, 580–597. [Google Scholar] [CrossRef]
- Ilo Bunker Fuel. Available online: https://www.inchem.org/documents/icsc/icsc/eics1774.htm (accessed on 14 September 2023).
- Marathon Petroleum. Marine Gas Oil: Safety Data Sheet; Marathon Petroleum: Findlay, OH, USA, 2017. [Google Scholar]
- Marathon Petroleum. Biodiesel B100: Safety Data Sheet; Marathon Petroleum: Findlay, OH, USA, 2016. [Google Scholar]
- Suhartono; Suharto; Ahyati, A.E. The Properties of Vegetable Cooking Oil as a Fuel and Its Utilization in a Modified Pressurized Cooking Stove. IOP Conf. Ser. Earth Environ. Sci. 2018, 105, 012047. [Google Scholar] [CrossRef]
- Chevron Phillips. Light Pyrolysis Oil: Safety Data Sheet; Chevron Phillips: Woodland, TX, USA, 2020. [Google Scholar]
- Dan-Bunkering CCAI Calculator. Available online: https://dan-bunkering.com/Pages/Solutions/Tools-and-specs/Tool-ccai.aspx (accessed on 15 June 2020).
- Schuller, O.; Whitehouse, S.; Poulsen, J.; Stoffregen, A.; Hengstler, J.; Kupferschmid, S. Life Cycle GHG Emission Study on the Use of LNG as Marine Fuel; Thinkstep AG: Stuttgart, Germany, 2019. [Google Scholar]
- Torres-García, M.; García-Martín, J.F.; Jiménez-Espadafor Aguilar, F.J.; Barbin, D.F.; Álvarez-Mateos, P. Vegetable Oils as Renewable Fuels for Power Plants Based on Low and Medium Speed Diesel Engines. J. Energy Inst. 2020, 93, 953–961. [Google Scholar] [CrossRef]
- Lin, C.Y. Strategies for Promoting Biodiesel Use in Marine Vessels. Mar. Policy 2013, 40, 84–90. [Google Scholar] [CrossRef]
- Engman, M.A.; Hartikka, T.; Honkanen, M.; Kiiski, U.; Kuronen, M.; Mikkonen, S.; Oyj, N.O. Hydrotreated Vegetable Oil (HVO)—Premium Renewable Biofuel for Diesel Engines; Neste: Espoo, Finland, 2014. [Google Scholar]
- Chong, K.J.; Bridgwater, A.V. Fast Pyrolysis Oil Fuel Blend for Marine Vessels. Environ. Prog. Sustain. Energy 2014, 36, 677–684. [Google Scholar] [CrossRef]
- Veses, A.; López, J.M.; García, T.; Callén, M.S. Prediction of Elemental Composition, Water Content and Heating Value of Upgraded Biofuel from the Catalytic Cracking of Pyrolysis Bio-Oil Vapors by Infrared Spectroscopy and Partial Least Square Regression Models. J. Anal. Appl. Pyrolysis 2018, 132, 102–110. [Google Scholar] [CrossRef]
- Huang, Y. Conversion of a Pilot Boat to Operation on Methanol; Chalmers University of Technology: Göteborg, Sweden, 2015. [Google Scholar]
- Hansson, J.; Fridell, E.; Brynolf, S. On the Potential of Ammonia as Fuel for Shipping—A Synthesis of Knowledge; Lighthouse: Göteborg, Sweden, 2019. [Google Scholar]
- Kay, C.; Ng, L.; Liu, M.; Siu, J.; Lam, L.; Yang, M. Accidental Release of Ammonia during Ammonia Bunkering: Dispersion Behaviour under the Influence of Operational and Weather Conditions in Singapore. J. Hazard. Mater. 2023, 452, 131281. [Google Scholar] [CrossRef]
- Lewis, J. Fuels Without Carbon: Prospects and the Pathway Forward for Zero-Carbon Hydrogen and Ammonia Fuel; Clean Air Task Force: Boston, MA, USA, 2018. [Google Scholar]
- Sheriff, A.M.; Tall, A. Assessment of Ammonia Ignition as a Maritime Fuel, Using Engine Experiments and Chemical Kinetic Simulations; World Maritime University: Malmo, Sweden, 2019. [Google Scholar]
- ABS. Low Carbon Shipping; ABS: Houston, TX, USA, 2019. [Google Scholar]
- Fan, H.; Enshaei, H.; Jayasinghe, S.G.; Tan, S.H.; Zhang, C. Quantitative Risk Assessment for Ammonia Ship-to-Ship Bunkering Based on Bayesian Network. Process Saf. Prog. 2022, 41, 395–410. [Google Scholar] [CrossRef]
- Aneziris, O.; Koromila, I.; Nivolianitou, Z. A Systematic Literature Review on LNG Safety at Ports. Saf. Sci. 2020, 124, 104595. [Google Scholar] [CrossRef]
- IMO. Studies on the Feasability and Use of LNG as a Fuel for Shipping; IMO: London, UK, 2016. [Google Scholar]
- American Bureau of Shipping. LNG Bunkering: Technical and Operational Advisory; American Bureau of Shipping: Houston, Texas, USA, 2014. [Google Scholar]
- FAO. Code of Practice for the Storage and Transport of Edible Fats and Oils in Bulk; FAO: Rome, Italy, 2015. [Google Scholar]
- Neste. Neste Renewable Diesel Handbook; Neste: Espoo, Finland, 2020. [Google Scholar]
- Lehto, J.; Oasmaa, A.; Solantausta, Y.; Kytö, M.; Chiaramonti, D. Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-Oils; VTT Technical Research Centre of Finland P.O.: Espoo, Finland, 2013; ISBN 978-951-38-7930-3. [Google Scholar]
- IMO. MSC.1-Circ.1621: Interim Guidelines for the Safety of Ships Using Methyl/Ethyl Alcohol as Fuel; IMO: London, UK, 2020. [Google Scholar]
- Duong, P.A.; Ryu, B.R.; Song, M.K.; Van Nguyen, H.; Nam, D.; Kang, H. Safety Assessment of the Ammonia Bunkering Process in the Maritime Sector: A Review. Energies 2023, 16, 4019. [Google Scholar] [CrossRef]
- Mokhatab, S.; Mak, J.Y.; Valappil, J.V.; Wood, D.A. Handbook of Liquefied Natural Gas; Elsevier: Oxford, UK, 2013; ISBN 9780124046450. [Google Scholar]
- Mærsk Mc-Kinney Møller Center. Preparing Container Vessels for Conversion to Green Fuels; Mærsk Mc-Kinney Møller Center: København, Denmark, 2022. [Google Scholar]
- American Bureau of Shipping. Propulsion and Auxiliary Systems for Gas Fuelled Ships; American Bureau of Shipping: Houston, Texas, USA, 2011. [Google Scholar]
- Mathew, B.C.; Thangaraja, J. Material Compatibility of Fatty Acid Methyl Esters on Fuel Supply System of CI Engines. Mater. Today Proc. 2018, 5, 11678–11685. [Google Scholar] [CrossRef]
- DNV. GL Part 6 Additional Class Notations Chapter 2 Propulsion, Power Generation and Auxiliary Systems; DNV: Bayrum, Norway, 2020. [Google Scholar]
- Man Energy Solutions. Engineering the Future Future in the: Two-Stroke Green-Ammonia Engine; MAN Energy Solutions: Augsburg, Germany, 2019. [Google Scholar]
- Laval, A.; Hafnia, H.T.; Vestas, S.G. Ammonfuel-an Industrial View of Ammonia as a Marine Fuel. Hafnia 2020, 7, 32–59. [Google Scholar]
- Dincer, I.; Siddiqui, O. Ammonia Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, ISBN 978-0-12-822825-8. [Google Scholar]
- Erdemir, D.; Dincer, I. A Perspective on the Use of Ammonia as a Clean Fuel: Challenges and Solutions. Int. J. Energy Res. 2021, 45, 4827–4834. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hayakawa, A.; Somarathne, K.D.K.A.; Okafor, E.C. Science and Technology of Ammonia Combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Wolfram, P.; Kyle, P.; Zhang, X.; Gkantonas, S.; Smith, S. Using Ammonia as a Shipping Fuel Could Disturb the Nitrogen Cycle. Nat. Energy 2022, 7, 1112–1114. [Google Scholar] [CrossRef]
- El-Gohary, M.M. The Future of Natural Gas as a Fuel in Marine Gas Turbine for LNG Carriers. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2012, 226, 371–377. [Google Scholar] [CrossRef]
- DNV. GL Alternative Fuels Insight. Available online: https://afi.dnvgl.com/ (accessed on 3 June 2023).
- World Fuel Services. ISO 8217 2017: Fuel Standard for Marine Distillate Fuels; World Fuel Services: Miami, FL, USA, 2019. [Google Scholar]
- Ogunkunle, O.; Ahmed, N.A. Exhaust Emissions and Engine Performance Analysis of a Marine Diesel Engine Fuelledwith Parinari Polyandra Biodiesel–Diesel Blends. Energy Reports 2020, 6, 2999–3007. [Google Scholar] [CrossRef]
- Van Uy, D.; The Nam, T. Fuel Continuous Mixer—An Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines. TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 2018, 12, 151–157. [Google Scholar] [CrossRef]
- No, S.Y. Application of Hydrotreated Vegetable Oil from Triglyceride Based Biomass to CI Engines—A Review. Fuel 2014, 115, 88–96. [Google Scholar] [CrossRef]
- Tabibian, S.S.; Sharifzadeh, M. Statistical and Analytical Investigation of Methanol Applications, Production Technologies, Value-Chain and Economy with a Special Focus on Renewable Methanol. Renew. Sustain. Energy Rev. 2023, 179, 113281. [Google Scholar] [CrossRef]
- BNDES Portos. Available online: https://hubdeprojetos.bndes.gov.br/pt/setores/Portos#1 (accessed on 22 June 2021).
- MME Programa Combustível Do Futuro. Available online: https://www.gov.br/mme/pt-br/programa-combustivel-do-futuro (accessed on 5 July 2023).
- Rede Brasil Pacto Global Da ONU No Brasil Lança GT de Negócios Oceânicos Para Impulsionar a Descarbonização de Portos e Transportes Marítimos. Available online: https://www.pactoglobal.org.br/noticia/676/pacto-global-da-onu-no-brasil-lanca-gt-de-negocios-oceanicos-para-impulsionar-a-descarbonizacao-de-portos-e-transportes-maritimos (accessed on 30 July 2023).
- Reis, R.G. Nimofast Signed a Partnership with Kanfer Shipping to Sell and Deliver LNG via Small-Scale LNG. Available online: https://www.nimofast.com/post/nimofast-signed-a-partnership-with-kanfer-shipping-to-sell-and-deliver-lng-via-small-scale-lng (accessed on 10 January 2023).
- Portos do Paraná. Relatório de 2021: Sustentabilidade; Portos do Paraná: Paranaguá, Brazil, 2021. [Google Scholar]
- Pecém Hub de Hidrogênio Verde No Complexo de Pecém. Available online: https://www.complexodopecem.com.br/hubh2v/ (accessed on 20 August 2023).
- Smith, T.; Krantz, R.; Mouftier, L.; Christiansen, E.S. Insight Briefing Series: Hydrogen as a Cargo; Getting to Zero Coallition: Copenhagen K, Denmark, 2021. [Google Scholar]
- Porto do Açu. Relatório de Sustentabilidade 2021; Porto do Açu: São João da Barra, Brazil, 2021. [Google Scholar]
- Engie Porto de Suape Quer Construir Planta de Hidrogênio Verde Estimada Em US$ 3.5 Bi. Available online: https://www.alemdaenergia.engie.com.br/porto-de-suape-quer-construir-planta-de-hidrogenio-verde-estimada-em-us-35-bi/ (accessed on 20 August 2023).
- Carlton, J. Ship Types, Duties, and General Characteristics. Encycl. Marit. Offshore Eng. 2018, 01, 1–20. [Google Scholar] [CrossRef]
- UDOP. Bunker One Testará Biodiesel Em Embarcações No Brasil Em 2022. Available online: https://www.udop.com.br/noticia/2021/12/21/bunker-one-testara-biodiesel-em-embarcacoes-no-brasil-em-2022.html (accessed on 10 March 2023).
- Petrobras Navio Da Transpetro Recebe Primeiro Abastecimento de Bunker Com Conteúdo Renovável. Available online: https://transpetro.com.br/transpetro-institucional/noticias/navio-da-transpetro-recebe-primeiro-abastecimento-de-bunker-com-conteudo-renovavel.htm (accessed on 11 March 2022).
- EPBR. Petrobras Testa Combustível Marítimo Com 24% de Biodiesel. Available online: https://epbr.com.br/petrobras-testa-combustivel-maritimo-com-24-de-biodiesel/ (accessed on 15 July 2023).
- Petrobras Vamos Ampliar Capacidade de Produção de Diesel Com Conteúdo Renovável Ainda Em 2023. Available online: https://petrobras.com.br/fatos-e-dados/vamos-ampliar-capacidade-de-producao-de-diesel-com-conteudo-renovavel-ainda-em-2023.htm (accessed on 20 July 2023).
- Norwegian Government. The Government’s Action Plan for Green Shipping; Norwegian Government: Oslo, Norway, 2019. [Google Scholar]
- NASA NASA Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 8 August 2023).
- Goulielmos, A.M. The “Kondratieff Cycles” in Shipping Economy since 1741 and till 2016. Mod. Econ. 2017, 8, 308–332. [Google Scholar] [CrossRef]
- VALE Terminal Maritimo Ponta Da Madeira Completa 35 Anos Com Novo Patamar de Embarque. Available online: https://www.vale.com/pt/w/terminal-marítimo-ponta-da-madeira-completa-35-anos-com-novo-patamar-de-embarque (accessed on 5 August 2023).
- Lindstad, E.; Polić, D.; Rialland, A.; Sandaas, I.; Stokke, T. Decarbonizing Bulk Shipping Combining Ship Design and Alternative Power. Ocean Eng. 2022, 266, 112798. [Google Scholar] [CrossRef]
- Law, L.C.; Mastorakos, E.; Evans, S. Estimates of the Decarbonization Potential of Alternative Fuels for Shipping as a Function of Vessel Type, Cargo, and Voyage. Energies 2022, 15, 7468. [Google Scholar] [CrossRef]
- Lloyd’s Register, UMAS. Techno-Economic Assessment of Zero-Carbon Fuels; Lloyd’s Register: London, UK, 2020. [Google Scholar]
- Meng, L.; Ge, H.; Wang, X.; Yan, W.; Han, C. Optimization of Ship Routing and Allocation in a Container Transport Network Considering Port Congestion: A Variational Inequality Model. Ocean Coast. Manag. 2023, 244, 106798. [Google Scholar] [CrossRef]
Partially Drop-In 1 | Non-Drop-In 1 |
---|---|
Biodiesel | Ammonia |
Hydrotreated pyrolysis oil (HPO) | Liquefied natural gas (LNG) |
Hydrotreated vegetable oil (HVO) | Methanol |
Straight vegetable oil (SVO) |
Segment | Analysed Aspects |
---|---|
Physical and chemical properties | Heating value Volumetric density Energy density Kinematic viscosity Acidity Flash point Self ignition temperature CCAI Other properties |
Bunkering | Pressurization Liquefaction Tank shape Inertisation Ventilation Maintenance |
Storage and fuel feeding | Pressurization Liquefaction Tank location Tank volume Inertisation Ventilation reinforcement Maintenance Need for double-wall Materials Drainage Preheating Filtering |
Energy conversion | Converter type Need for pilot fuel Engine adjustments |
Fuel Property | Heating Value | Volumetric Density | Energy Density | Viscosity at 40 °C | Acidity | Flash Point | Self-Ignition Temperature | Aromaticity Index (CCAI) |
---|---|---|---|---|---|---|---|---|
Unit | MJ/kg | kg/m³ | MJ/m³ | mm/s² | Mg KOH/g | °C | °C | - |
HFO | 40.0 a | 991 a | 39,640 | 380 i | 2.5 i | >60 i | 407 p | 856.5 u |
MGO | 42.0 a | 890 a | 37,380 | 3.5 i | 0.5 i | >60 i | 257 q | 808.1 u |
LNG | 50.0 b | 415 b | 20,750 | - | - | −188 b | 537 o | - |
Biodiesel | 37.1c | 885 c | 32,833.5 | 4–6 j | 0.052–0.295 m | >93 c | 374–449 r | 822.6 u |
SVO | 37–39.62 a | 900–930 a | 33,300–36,847 | 14–40 k | 0.02–20 n | >400 k | 405 s | 836.6–878.7 u |
HVO | 44.1 d | 780 d | 34,398 | 3 d | - | 99 d | 204 o | 738.4 u |
HPO | 28.9 e | 1150 h | 33,235 | 9 h | 21.3–76.1 h | 53–101 h | 340 t | 1076 u |
Ammonia | 18.6 g | 758 g | 14,101 | - | - | 132 o | 630 o | - |
Methanol | 20.1 f | 798 f | 16,040 | 0.58 l | - | 12 f | 470 o | 837.6 u |
Criteria | LNG | Biodiesel | SVO | HVO | HPO | Methanol | Ammonia |
---|---|---|---|---|---|---|---|
Energy density HFO/fuel | 1.91 | 1.21 | 1.19–1.08 | 1.15 | 1.19 | 2.47 | 2.81 |
Bunkering readiness | Already worldwide established | Adaptation to biodiesel properties, narrow shaped tanks, constant cleaning | Procedures are similar to HFO bunkering | Procedures are similar to MDO bunkering | Urge of development all bunkering process | Under establishment, ventilation reinforcement | Ammonia bunkering is already performed in the chemical industry |
Material compatibility | Aluminium and stainless steel | Stainless steel or zinc reinforcement | Stainless or mild steel if coated with zinc silicate | No changes are needed | Stainless steel | Stainless or austenitic manganese steel | Stainless steel |
Storage tanks | Double-walled, cryogenic storage (−162°), 10 bar pressure, inert | Isolated from machinery | Isolated from machinery, coated with vegetable oil inert material | Constant maintenance to avoid water contamination | Isolated from machinery, coated with biomass oil inert material | Double-walled, detection system to leakages | Double-walled, isolated from machinery, pressure of 8.6 bar |
Engine feed | Double-walled, Ventilation reinforcement, 10 bar feed pressure | Filtering, constant maintenance | Pre-heating (67 to 78 °C), filtering, constant maintenance | No changes are needed | Pre-heating, piping designed to not block solid particles, filtering | Double-walled, ventilation reinforcement, pressure of 10 bar | Double-walled, ventilation reinforcement |
Engine option | Dual fuel | Diesel engine | Diesel engine | Diesel engine | Diesel engine | Dual fuel | Fuel cell (dual-fuel is also an option) |
Safety | Cryogenic and flammable | Low temperature use restricted due to low pour point, low toxicity | Low toxicity | Low toxicity | Low toxicity | Highly toxic and flammable | Highly toxic and flammable |
TRL | 9 | 7 | 5 | 5 | 2 | 7 | 5 |
Port | Cargo Movement (106 Metric-Ton) | Main Products | Main Destinations |
---|---|---|---|
Açu | 39.0 | Oil and derivatives, containers, cooper, iron and steel | Suape, Madre de Deus, Santos, Rio de Janeiro, Vitória |
Angra dos Reis | 29.3 | Iron and steel, oil and derivatives | Alexandria (Egipt), Mersin (Turkey), Kabil (Indonesia), Qingdao (China), Aratu |
Belém | 2.6 | Containers, oil and derivatives, corn, general cargo | Manaus, Barcarena, Fortaleza, Madre de Deus, Santarém |
Guaíba | 26.3 | Iron ore, wood, cellulose pulp | Rio de Janeiro, Rio Grande, Port Talbot (Wales), Ijmuiden and Rotterdam (the Netherlands) |
Itacoatiara | 7.0 | Soy, soy oil, ethanol, fossil fuels, oil and derivatives | Fortaleza, Manaus, Itaqui |
Itaguaí | 46.9 | Containers | Santos, Imbituba, Suape, Callao (Peru), Rotterdam (the Netherlands) |
Itaituba | 6.1 | Oil and derivatives, corn, soy | Belém, Manaus, Porto Velho, Santarém, Santana |
Itaqui | 20.3 | Oil and derivatives, containers, ethanol, chemical products | Belém, Aratu, Fortaleza, Santos, Suape |
Manaus | 6.0 | Oil and derivatives, containers, general cargo | Belém, Fortaleza, Santos, Suape, Itacoatiara |
Paranaguá | 32.6 | Containers, oil and derivatives, chemical products, wheat | Belém, Fortaleza, Santos, Suape, Itaguaí |
Pecém | 10.4 | Containers, iron and steel, oil and derivatives, manganese | Los Angeles (USA), Manaus, Cubatão, Brownsville (USA), Santos |
Ponta da Madeira | 186.6 | Iron ore | Qingdao (China), Labuan (Malaysia), Kwangyang (Korea), Sohrar (Oman), Pecém |
Porto Velho | 14.2 | Soy, corn, containers, general cargo | Santarém, Itacoatiara, Belém, Long Beach (USA), Montoir De Bretagne (France) |
Recife | 0.3 | Sugar, salt, oil and derivatives, fossil fuels | Dubai (UAE), Fernando de Noronha, Baltimore (USA), Barra Do Riacho, Douala (Cameroon) |
Rio Grande | 20.0 | Soy, containers, wood, fertilizers | Tanger (Morocco), Pecém, Antwerpen (Belgiun), Porto Alegre, Dafeng (China) |
SãoSebastião | 12.6 | Oil and derivatives, sugar | Singapore, Qingdao (China), Manaus, Itaqui, Itacoatiara |
Salvador | 4.5 | Oil and derivatives, cellulose pulp, containers | Vila do Conde, Belém, São Sebastião, Changshu (China), Santos |
Santarém | 6.5 | Oil and derivatives, soy, corn, fertilizers | Itaituba, Algete and Barcelona (Spain), Belém, Rotterdam (the Netherlands) |
Santos | 99.1 | Soy, oil and derivatives, soy oil, containers | Anshan, Koh Sichang (China), Bandar Khomeini (Iran), Singapore, São Sebastião |
Suape | 11.8 | Oil and derivatives, containers, sugar, ethanol | Singapore, Manaus, Fortaleza, Itaqui, Santos |
Tubarão | 62.7 | Iron ore, soy | Tangshan, Qingdao and Rizhao (China), Labuan (Malaysia), Rio de Janeiro |
Ship Type | Products Transported | Average Age (2023) | Average DWT | Fleet Size |
---|---|---|---|---|
Tanker | Crude oil and derivatives | 10 | 89,054 | 54 |
Bulk | Dry bulk | 15 | 57,007 | 21 |
Container | Container | 13 | 45,009 | 33 |
Chemical tanker | Chemical products | 18 | 26,234 | 8 |
Pipe laying support vessel (PLSV) | Offshore pipes | 9 | 10,661 | 8 |
Subsea equipment support vessel | Subsea equipment | 15 | 7570 | 2 |
LPG tanker | Liquefied petroleum gas | 11 | 5481 | 8 |
Liquefied gas tanker | Liquefied gases | 13 | 5455 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Müller-Casseres, E.; Belchior, C.R.P.; Szklo, A. Evaluating the Readiness of Ships and Ports to Bunker and Use Alternative Fuels: A Case Study from Brazil. J. Mar. Sci. Eng. 2023, 11, 1856. https://doi.org/10.3390/jmse11101856
Wei H, Müller-Casseres E, Belchior CRP, Szklo A. Evaluating the Readiness of Ships and Ports to Bunker and Use Alternative Fuels: A Case Study from Brazil. Journal of Marine Science and Engineering. 2023; 11(10):1856. https://doi.org/10.3390/jmse11101856
Chicago/Turabian StyleWei, Huang, Eduardo Müller-Casseres, Carlos R. P. Belchior, and Alexandre Szklo. 2023. "Evaluating the Readiness of Ships and Ports to Bunker and Use Alternative Fuels: A Case Study from Brazil" Journal of Marine Science and Engineering 11, no. 10: 1856. https://doi.org/10.3390/jmse11101856
APA StyleWei, H., Müller-Casseres, E., Belchior, C. R. P., & Szklo, A. (2023). Evaluating the Readiness of Ships and Ports to Bunker and Use Alternative Fuels: A Case Study from Brazil. Journal of Marine Science and Engineering, 11(10), 1856. https://doi.org/10.3390/jmse11101856