Interannual Variability and Long-Term Trends in Intensity of the Yellow Sea Cold Water Mass during 1993–2019
Abstract
:1. Introduction
2. Data Sets and Methods
2.1. Data Sets
2.1.1. Atmospheric and Oceanic Data Sets
2.1.2. Satellite and In Situ Data
2.2. Methods
2.2.1. Verification of Seawater Temperature Data from GLORYS
2.2.2. Wavelet Analysis
3. Results
3.1. Spatial Patterns of Annual and Interannual Seawater Temperature in the Bottom Layer of the YS
3.2. Seasonal Formation and Evolution of the YSCWM
3.3. Interannual Variability of the YSCWM in the YS
4. Discussion
4.1. Combined Factors for Explaining Interannual Variability in Intensities of the NYSCWM and SYSCWM
4.2. Underlying Mechanisms Associated with Differences in Long-Term Trends in the Intensity of the NYSCWM and SYSCWM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, K.L., Jr.; Ruhl, H.A.; Bett, B.J.; Billett, D.S.; Lampitt, M.; R.S.; Kaufmann, R.S. Climate, carbon cycling, and deep-ocean ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 19211–19218. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Hill, A.; Fernand, L.E.; Horsburgh, K.J. Observations of a seasonal jet-like circulation at the central North Sea cold pool margin. Estuar. Coast. Shelf Sci. 1999, 48, 343–355. [Google Scholar] [CrossRef]
- Horsburgh, K.J.; Hill, A.E.; Brown, J.; Fernand, L.; Garvine, R.W.; Angelico, M.M.P. Seasonal evolution of the cold pool gyre in the western Irish Sea. Prog. Oceanogr. 2000, 46, 1–58. [Google Scholar] [CrossRef]
- Hill, A.E.; Durazo, R.; Smeed, D.A. Observations of a cyclonic gyre in the western Irish Sea. Cont. Shelf Res. 1994, 14, 479–490. [Google Scholar] [CrossRef]
- Houghton, R.W.; Schlitz, R.; Beardsley, R.C.; Butman, B.; Chamberlin, J.L. The Middle Atlantic Bight Cold Pool: Evolution of the Temperature Structure During Summer 1979. J. Phys. Oceanogr. 1982, 12, 1019–1029. [Google Scholar] [CrossRef]
- Warrach, K. Modelling the thermal stratification in the North Sea. J. Mar. Syst. 1998, 14, 151–165. [Google Scholar] [CrossRef]
- Luyten, P.J.; Jones, J.E.; Proctor, R. A numerical study of the long- and short-term temperature variability and thermal circulation in the North Sea. J. Phys. Oceanogr. 2003, 33, 37–56. [Google Scholar] [CrossRef]
- Yuan, D.L.; Li, Y.; Qiao, F.L.; Zhao, W. Temperature inversion in the Huanghai Sea bottom cold water in summer. Acta Oceanol. Sin. 2013, 32, 42–47. [Google Scholar] [CrossRef]
- Wei, H.; Shi, J.; Lu, Y.Y.; Peng, Y.A. Interannual and long-term hydrographic changes in the Yellow Sea during 1977–1998. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2010, 57, 1025–1034. [Google Scholar] [CrossRef]
- Yu, X.J.; Guo, X.Y.; Takeoka, H. Fortnightly Variation in the Bottom Thermal Front and Associated Circulation in a Semienclosed Sea. J. Phys. Oceanogr. 2016, 46, 159–177. [Google Scholar] [CrossRef]
- Wei, Q.S.; Wang, B.; Fu, M.; Sun, J.; Yao, Q.; Xin, M.; Yu, Z. Spatiotemporal variability of physical-biogeochemical processes and intrinsic correlations in the semi-enclosed South Yellow Sea. Acta Oceanol. Sin. 2020, 39, 11–26. [Google Scholar] [CrossRef]
- Du, B. The characteristics of cold water mass variation at the bottom of the North Yellow Sea and its hydrological effects on the mortality of shellfish cultured in the waters of outer Changshun Islands. Mar. Sci. Bull. 1996, 15, 17–28. [Google Scholar]
- Li, W.J.; Wang, Z.; Huang, H. Relationship between the southern Yellow Sea Cold Water Mass and the distribution and composition of suspended particulate matter in summer and autumn seasons. J. Sea Res. 2019, 154, 101812. [Google Scholar] [CrossRef]
- Guo, C.C.; Zhang, G.; Sun, J.; Leng, X.; Xu, W.; Wu, C.; Li, X.; Pujari, L. Seasonal responses of nutrient to hydrology and biology in the southern Yellow Sea. Cont. Shelf Res. 2020, 206, 104207. [Google Scholar] [CrossRef]
- Park, S.; Chu, P.C.; Lee, J.H. Interannual-to-interdecadal variability of the Yellow Sea Cold Water Mass in 1967-2008: Characteristics and seasonal forcings. J. Mar. Syst. 2011, 87, 177–193. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Shi, J.; Guo, X.; Gao, H.; Yao, X. Air-sea heat flux control on the Yellow Sea Cold Water Mass intensity and implications for its prediction. Cont. Shelf Res. 2018, 152, 14–26. [Google Scholar] [CrossRef]
- Zhai, F.G.; Liu, Z.; Li, P.; Gu, Y.; Hu, L.; Sun, L.; Yang, B. Monthly and Interannual Variations in Winter Positive Surface-Bottom Temperature Difference in Northeastern Coastal Waters of the Shandong Peninsula in the Yellow Sea. J. Geophys. Res.-Ocean. 2021, 126, e2021JC017562. [Google Scholar] [CrossRef]
- Hao, J.J.; Chen, Y.L.; Wang, F.; Lin, P.F. Seasonal thermocline in the China Seas and northwestern Pacific Ocean. J. Geophys. Res.-Ocean. 2012, 117, C02022. [Google Scholar] [CrossRef]
- Zhang, S.W.; Wang, Q.Y.; Lu, Y.; Cui, H.; Yuan, Y.L. Observation of the seasonal evolution of the Yellow Sea Cold Water Mass in 1996-1998. Cont. Shelf Res. 2008, 28, 442–457. [Google Scholar] [CrossRef]
- He, C.B.; Wang, Y.; Lei, Z.; Xu, S.G. A preliminary study of the formation and its properties of the Yellow Sea Cold Water Mass. Oceanol. Limnol. Sin. 1959, 2, 11–15. [Google Scholar]
- Li, X.W.; Wang, X.; Chu, P.C.; Zhao, D. Low-frequency variability of the Yellow Sea Cold Water Mass identified from the China Coastal waters and adjacent seas reanalysis. Adv. Meteorol. 2015, 2015, 269859. [Google Scholar] [CrossRef]
- Ren, H.J.; Zhan, J. A numerical study on the seasonal variability of the Yellow Sea cold water mass and the related dynamics. J. Hydrodyn. 2005, 20, 887–896. [Google Scholar] [CrossRef]
- Jiang, B.J.; Bao, X.; Wu, D.; Xu, J. Interannual variation of temperature and salinity of northern Huanghai Sea Cold Water Mass and its probable cause. Acta Oceanol. Sin. 2007, 29, 1–10. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Z.; Diao, X.; Guo, J.; Tang, Y. Analysis of evolution of the Huanghai Sea Cold Water Mass and its relationship with adjacent water masses. Acta Oceanol. Sin. 2006, 28, 26–34. [Google Scholar] [CrossRef]
- Wang, B.D. Characteristics of variations and interrelations of biogenic elements in the Huanghai Sea Cold Water Mass. Acta Oceanol. Sin. 2000, 22, 47–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y. Analyses of the variational characteristics of the north Huanghai Sea Cold Water Mass. Mar. Forecast. 1996, 13, 15–21. [Google Scholar]
- Zhang, Y.; He, X. The annual variation and its fore-casting of the intensity of cold water mass of the western-north Yellow Sea in spring. J. Ocean. Univ. Qingdao 1989, 19, 275–283. [Google Scholar] [CrossRef]
- Weng, X.C.; Zhang, Y.; Wang, C.; Zhang, Q. The variational characteristics of the Huanghai Sea (Yellow Sea) cold water mass. Oceanol. Limnol. Sin. 1989, 19, 119–131. [Google Scholar] [CrossRef]
- Li, J.C.; Li, G.X.; Xu, J.S.; Dong, P.; Qiao, L.L.; Liu, S.D.; Sun, P.K.; Fan, Z.S. Seasonal evolution of the Yellow Sea Cold Water Mass and its interactions with ambient hydrodynamic system. J. Geophys. Res.-Ocean. 2016, 121, 6779–6792. [Google Scholar] [CrossRef]
- Guo, Y.; Mo, D.; Hou, Y. Interannual to Interdecadal Variability of the Southern Yellow Sea Cold Water Mass and Establishment of “Forcing Mechanism Bridge”. J. Mar. Sci. Eng. 2021, 9, 1316. [Google Scholar] [CrossRef]
- Li, A.; Yu, F.; Diao, X.; Si, G. Interannual variability of temperature of the northern Yellow Sea Cold Water Mass. Acta Oceanol. Sin. 2015, 37, 30–42. [Google Scholar]
- Lellouche, J.-M.; Greiner, E.; Romain, B.-B.; Gilles, G.; Angelique, M.; Marie, D.; Clement, B.; Mathieu, H.; Olivier, L.G.; Charly, R.; et al. The Copernicus Global 1/12 degrees Oceanic and Sea Ice GLORYS12 Reanalysis. Front. Earth Sci. 2021, 9, 698876. [Google Scholar] [CrossRef]
- Bonjean, F.; Lagerloef, G.S.E. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr. 2002, 32, 2938–2954. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 1998, 103, 24937–24953. [Google Scholar] [CrossRef]
- Martin, M.A.; Ghent, D.; Pires, A.C.; Göttsche, F.-M.; Cermak, J.; Remedios, J.J. Comprehensive in situ validation of five satellite land surface temperature data sets over multiple stations and years. Remote Sens. 2019, 11, 479. [Google Scholar] [CrossRef]
- Stepanova, N.; Mizyuk, A. On the Applicability of CMEMS Reanalysis Data for Investigation of the Cold Intermediate Layer in the South-Eastern Part of the Baltic Sea. Pure Appl. Geophys. 2022, 179, 3481–3492. [Google Scholar] [CrossRef]
- Salon, S.; Cossarini, G.; Bolzon, G.; Feudale, L.; Lazzari, P.; Teruzzi, A.; Solidoro, C.; Crise, A. Novel metrics based on Biogeochemical Argo data to improve the model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem forecasts. Ocean Sci. 2019, 15, 997–1022. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2016, 20, 3183–3191. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Huang, H.; Chen, X.; Lin, L. Evolution and mechnism of the Qingdao cold water mass. Oceanol. Limnol. Sin. 2019, 50, 1191–1200. [Google Scholar]
- Oh, K.-H.; Lee, S.; Song, K.-M.; Lie, H.-J.; Kim, Y.-T. The temporal and spatial variability of the Yellow Sea Cold Water Mass in the southeastern Yellow Sea, 2009–2011. Acta Oceanol. Sin. 2013, 32, 1–10. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Q. Interannual variability of the southern Yellow Sea Cold Water Mass. Chin. J. Oceanol. Limnol. 2004, 22, 231–236. [Google Scholar]
- Yao, Z.; Bao, X.; Li, N.; Li, X.; Wan, K.; Song, J. Seasonal Evolution of the Northern Yellow Sea Cold Water Mass. J. Ocean Univ. China 2012, 42, 9–15. [Google Scholar]
- Lu, X.L.; Liu, C.; Niu, Y.; Yu, S. Long-term and regional variability of phytoplankton biomass and its physical oceanographic parameters in the Yellow Sea, China. Estuar. Coast. Shelf Sci. 2021, 260, 107497. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, X.; Zhou, T.; Li, C.; Chan, J. Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteorol. Atmos. Phys. 2007, 98, 283–293. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C.; Biswas, A.; Chau, H.W. Temporally stable patterns but seasonal dependent controls of soil water content: Evidence from wavelet analyses. Hydrol. Process. 2017, 31, 3697–3707. [Google Scholar] [CrossRef]
- Yu, F.; Ren, Q.; Diao, X.; Wei, C.; Hu, Y. The Sandwich Structure of the Southern Yellow Sea Cold Water Mass and Yellow Sea Warm Current. Front. Mar. Sci. 2022, 8, 767850. [Google Scholar] [CrossRef]
- Li, A.; Yu, F.; Si, G.; Wei, C. Long-term temperature variation of the Southern Yellow Sea Cold Water Mass from 1976 to 2006. Chin. J. Oceanol. Limnol. 2017, 35, 1032–1044. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Beckers, J.-M. Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Moon, J.H.; Hirose, N.; Yoon, J.H. Comparison of wind and tidal contributions to seasonal circulation of the Yellow Sea. J. Geophys. Res. Ocean. 2009, 114, C08016. [Google Scholar] [CrossRef]
- Wang, B.; Hirose, N.; Moon, J.-H.; Yuan, D. Comparison of Tidal and Wind Contributions to Lagrangian Trajectories in the Southwestern Yellow Sea. Rep. Res. Inst. Appl. Mech. Kyushu Univ. 2012, 143, 43–48. [Google Scholar] [CrossRef]
- Beardsley, R.C.; Limeburner, R.; Kim, K.; Candela, J. Lagrangian flow observations in the East China, Yellow and Japan seas. La Mer 1992, 30, 297–314. [Google Scholar]
- Xia, C.S.; Qiao, F.L.; Yang, Y.Z.; Ma, J.; Yuan, Y.L. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys. Res.-Ocean. 2006, 111, C11S03. [Google Scholar] [CrossRef]
- Zhao, B.R. A study of the circulations of the northern Yellow Sea cold water mass (NYSCWM)-Effects of tidal mixing on them. Oceanol. Limnol. Sin. 1996, 27, 429–435. [Google Scholar]
- Song, D.H.; Bao, X.; Zhang, S.; Zhang, C. Three-dimensional numerical simulation of tides and tidal currents in Lianzhou Bay and adjacent areas. Mar. Sci. Bull. 2012, 31, 1–15. [Google Scholar] [CrossRef]
- Black, W.J.; Dickey, T.D. Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda. J. Geophys. Res.-Ocean. 2008, 113, C08009. [Google Scholar] [CrossRef]
- Xin, M.; Ma, D.; Wang, B. Chemicohydrographic characteristics of the Yellow Sea Cold Water Mass. Acta Oceanol. Sin. 2015, 34, 5–11. [Google Scholar] [CrossRef]
- Alexander, M.A.; Scott, J.D.; Deser, C. Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res.-Ocean. 2000, 105, 16823–16842. [Google Scholar] [CrossRef]
Variables | Data Product | Period | Spatial Resolution |
---|---|---|---|
SST, STb | GLORYS | 1993–2019 (STb) | 0.083° |
2005–2017 (SST) | |||
Ugos, Vgos | OSCAR | 1993–2019 | 0.333° |
SAT, SLP, U, V, NRF | ERA5 | 1993–2019 | 0.5° |
Niño 3.4 | NOAA | 1993–2019 | \ |
Satellite SST | MODIS | 2005–2017 | 4 km |
In situ data | KODC | 1993–2019 | \ |
Combination | Region | Factor Combination | Coherence | PASC (%) |
---|---|---|---|---|
Two factors | NYSCWM | SAT–Niño 3.4 | 0.76 | 41.42 |
SYSCWM | SST–Vgos | 0.68 | 23.81 | |
Three factors | NYSCWM | SAT–SST–Niño 3.4 | 0.87 | 41.69 |
SYSCWM | SST–Vgos–Niño 3.4 | 0.83 | 28.91 | |
Four factors | NYSCWM | SAT–V–Niño 3.4–SLP | 0.93 | 41.92 |
SYSCWM | SST–NRF–Vgos–Niño 3.4 | 0.92 | 37.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Liu, C.; Sun, Q.; Zhai, L.; Sun, Q.; Li, S.; Ai, L.; Li, X. Interannual Variability and Long-Term Trends in Intensity of the Yellow Sea Cold Water Mass during 1993–2019. J. Mar. Sci. Eng. 2023, 11, 1888. https://doi.org/10.3390/jmse11101888
Yang J, Liu C, Sun Q, Zhai L, Sun Q, Li S, Ai L, Li X. Interannual Variability and Long-Term Trends in Intensity of the Yellow Sea Cold Water Mass during 1993–2019. Journal of Marine Science and Engineering. 2023; 11(10):1888. https://doi.org/10.3390/jmse11101888
Chicago/Turabian StyleYang, Jing, Chunli Liu, Qiwei Sun, Li Zhai, Qiming Sun, Shiji Li, Libo Ai, and Xue Li. 2023. "Interannual Variability and Long-Term Trends in Intensity of the Yellow Sea Cold Water Mass during 1993–2019" Journal of Marine Science and Engineering 11, no. 10: 1888. https://doi.org/10.3390/jmse11101888
APA StyleYang, J., Liu, C., Sun, Q., Zhai, L., Sun, Q., Li, S., Ai, L., & Li, X. (2023). Interannual Variability and Long-Term Trends in Intensity of the Yellow Sea Cold Water Mass during 1993–2019. Journal of Marine Science and Engineering, 11(10), 1888. https://doi.org/10.3390/jmse11101888