Sr and Nd Isotopes in Mineral Fractions of Ferromanganese Crusts from the Northernmost Pacific
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Studied Crusts
2.3. Measurements
3. Results
3.1. Sr and Nd in Bulk Samples
3.2. Sr and Nd in Mineral Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halbach, P.E.; Jahn, A.; Cherkashov, G. Marine Co-Rich Ferromanganese Crust Deposits: Description and Formation, Occurrences and Distribution, Estimated World-wide Resources. In Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations; Sharma, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 65–141. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A.; Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 2020, 1, 158–169. [Google Scholar] [CrossRef]
- Yi, L.; Medina-Elizalde, M.; Tan, L.; Kemp, D.B.; Li, Y.; Kletetschka, G.; Xie, Q.; Yao, H.; He, H.; Deng, C.; et al. Plio-Pleistocene deep-sea ventilation in the Eastern Pacific and potential linkages with Northern Hemisphere glaciation. Sci. Adv. 2023, 9, eadd1467. [Google Scholar] [CrossRef] [PubMed]
- Koschinsky, A.; Hein, J.R. Marine Ferromanganese Encrustations: Archives of Changing Oceans. Elements 2017, 13, 177–182. [Google Scholar] [CrossRef]
- Toro, N.; Robles, P.; Jeldres, R.I. Seabed mineral resources, an alternative for the future of renewable energy: A critical review. Ore Geol. Rev. 2020, 126, 103699. [Google Scholar] [CrossRef]
- Bonatti, E.; Kreamer, T.; Rydell, H. Classification and Genesis of Submarine Iron Manganese Deposits. Ferromanganese Deposits on the Ocean Floor: Office for the International Decade of Ocean Exploration; National Science Foundation: Washington, DC, USA, 1972; pp. 149–165. [Google Scholar]
- Hein, J.R.; Koschinsky, A. 13.11—Deep-Ocean Ferromanganese Crusts and Nodules. In Treatise on Geochemistry, 2nd ed.; Holland, H., Turekian, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 273–291. [Google Scholar] [CrossRef]
- Mikhailik, P.E.; Vishnevskaya, I.A.; Mikhailik, E.V.; Blokhin, M.G.; Chervyakovskaya, M.V.; Rashidov, V.A.; Ren, X. Genesis and Nd Isotope Composition of Ferromanganese Deposits of the Sea of Okhotsk and the Kuril Island Arc. Russ. Geol. Geophys. 2021, 62, 1074–1087. [Google Scholar] [CrossRef]
- Mikhailik, P.E.; Vishnevskaya, I.A.; Mikhailik, E.V.; Rashidov, V.A.; Savelyev, D.P.; Soloshenko, N.G. Srand Nd isotopes in hydrogenetic ferromanganese crusts from the North Pacific. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2023, 334, 7–21. [Google Scholar] [CrossRef]
- Manheim, F.T.; Lane-Bostwick, C.M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the sea floor. Nature 1988, 335, 59–62. [Google Scholar] [CrossRef]
- Scher, H.D.; Martin, E.E. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth Planet. Sci. Lett. 2004, 228, 391–405. [Google Scholar] [CrossRef]
- Jones, K.M.; Khatiwala, S.P.; Goldstein, S.L.; Hemming, S.R.; van de Flierdt, T. Modeling the distribution of Nd isotopes in the oceans using an ocean general circulation model. Earth Planet. Sci. Lett. 2008, 272, 610–619. [Google Scholar] [CrossRef]
- Siddall, M.; Khatiwala, S.; van de Flierdt, T.; Jones, K.; Goldstein, S.L.; Hemming, S.; Anderson, R.F. Towards explaining the Nd paradox using reversible scavenging in an ocean general circulation model. Earth Planet. Sci. Lett. 2008, 274, 448–461. [Google Scholar] [CrossRef]
- Carter, P.; Vance, D.; Hillenbrand, C.D.; Smith, J.A.; Shoosmith, D.R. The neodymium isotopic composition of waters masses in the eastern Pacific sector of the Southern Ocean. Geochim. Et Cosmochim. Acta 2012, 79, 41–59. [Google Scholar] [CrossRef]
- Williams, T.J.; Martin, E.E.; Sikes, E.; Starr, A.; Umling, N.E.; Glaubke, R. Neodymium isotope evidence for coupled Southern Ocean circulation and Antarctic climate throughout the last 118,000 years. Quat. Sci. Rev. 2021, 260, 106915. [Google Scholar] [CrossRef]
- Frank, M. Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Rev. Geophys. 2002, 40, 1–38. [Google Scholar] [CrossRef]
- Jeandel, C.; Arsouze, T.; Lacan, F.; Téchiné, P.; Dutay, J.-C. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: A compilation, with an emphasis on the margins. Chem. Geol. 2007, 239, 156–164. [Google Scholar] [CrossRef]
- Burton, K.W.; Vance, D. Glacial–interglacial variations in the neodymium isotope composition of seawater in the Bay of Bengal recorded by planktonic foraminifera. Earth Planet. Sci. Lett. 2000, 176, 425–441. [Google Scholar] [CrossRef]
- Piotrowski, A.M.; Goldstein, S.L.; Hemming, S.R.; Fairbanks, R.G. Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science 2005, 307, 1933–1938. [Google Scholar] [CrossRef]
- Horikawa, K.; Asahara, Y.; Yamamoto, K.; Okazaki, Y. Intermediate water formation in the Bering Sea during glacial periods: Evidence from neodymium isotope ratios. Geology 2010, 38, 435–438. [Google Scholar] [CrossRef]
- Roberts, N.L.; Piotrowski, A.M.; McManus, J.F.; Keigwin, L.D. Synchronous deglacial overturning and water mass source changes. Science 2010, 327, 75–78. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, J.; Li, T.; Shi, X.; Robinson, L.F.; Wang, M.; Li, G.; Ling, H.; Ren, X.; Ji, J. Thorium isotope evidence for glacial–interglacial dust storminess and productivity in the North Pacific gyre. Geochim. Et Cosmochim. Acta 2023, 346, 15–28. [Google Scholar] [CrossRef]
- Prakash, S.L.; Ray, D.; Paropkari, A.L.; Mudholkar, A.V.; Satyanarayanan, M.; Sreenivas, B.; Chandrasekharam, D.; Kota, D.; Kamesh Raju, K.A.; Kaisary, S.; et al. Distribution of REEs andyttrium among major geochemical phases of marine Fe–Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits. Chem. Geol. 2012, 312, 127–137. [Google Scholar] [CrossRef]
- Mikhailik, P.E.; Mikhailik, E.V.; Zarubina, N.V.; Blokhin, M.G. Distribution of rare-earth elements and yttrium in hydrothermal sedimentary ferromanganese crusts of the Sea of Japan (from phase analysis results). Russ. Geol. Geophys. 2017, 58, 1530–1542. [Google Scholar] [CrossRef]
- Prakash, S.L.; Ray, D.; Nagender Nath, B.; Satyanarayanan, M.; Kamesh Raju, K.A.; Kurian, J.P.; Dileep Kumar, M.; Srinivas Rao, A. Anomalous phase association of REE in ferromanganese crusts from Indian mid-oceanic ridges: Evidence for large scale dispersion of hydrothermal iron. Chem. Geol. 2020, 549, 119679. [Google Scholar] [CrossRef]
- Frank, M.; O’Nions, R.K.; Hein, J.R.; Banakar, V.K. 60 Myr records of major elements and Pb–Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochim. Et Cosmochim. Acta 1999, 63, 1689–1708. [Google Scholar] [CrossRef]
- Ren, J.; He, G.; Deng, X.; Deng, X.; Yang, Y.; Yao, H.; Yang, S. Metallogenesis of Co-rich ferromanganese nodules in the northwestern Pacific: Selective enrichment of metallic elements from seawater. Ore Geol. Rev. 2022, 143, 104778. [Google Scholar] [CrossRef]
- van de Flierdt, T.; Frank, M.; Lee, D.-C.; Halliday, A.N.; Reynolds, B.C.; Hein, J.R. New constraints on the sources and behavior of neodymium and hafnium in seawater from Pacific Ocean ferromanganese crusts. Geochim. Et Cosmochim. Acta 2004, 68, 3827–3843. [Google Scholar] [CrossRef]
- Hyeong, K.; Kuroda, J.; Seo, I.; Wilson, P.A. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition. Sci. Rep. 2016, 6, 30647. [Google Scholar] [CrossRef]
- Clague, D.A.; Dalrymple, G.B. The Hawaiian-Emperor volcanic chain. part I. Geologic evolution. Volcanism Hawaii 1987, 1, 5–54. Available online: https://hdl.handle.net/10524/33604 (accessed on 5 January 2021).
- Rea, D.K.; Basov, L.A.; Scholl, D.W.; Allan, J.F. (Eds.) Proceedings ODP, Science Results; Ocean Drilling Program: College Station, TX, USA, 1995; Volume 145, p. 690. [Google Scholar] [CrossRef]
- Tarduno, J.A.; Duncan, R.A.; Scholl, D.W.; Cottrell, R.D.; Steinberger, B.; Thordarson, T.; Kerr, B.C.; Neal, C.R.; Frey, F.A.; Torii, M.; et al. The Emperor Seamounts: Southward Motion of the Hawaiian Hotspot Plume in Earth’s Mantle. Science 2003, 301, 1064. [Google Scholar] [CrossRef]
- Sun, W.; Langmuir, C.H.; Ribe, N.M.; Zhang, L.; Sun, S.; Li, H.; Li, C.; Fan, W.; Tackley, P.J.; Sanan, P. Plume-ridge interaction induced migration of the Hawaiian-Emperor seamounts. Sci. Bull. 2021, 66, 1691–1697. [Google Scholar] [CrossRef]
- Hoernel, K.; Jicha, B.R.; Müller, D.; Portnyagin, M.; Werner, R.; Hauff, F.; Bezard, R.; Höfig, T.W.; Yogodzinski, G. Role of the Aleutian Arc and NW Pacific Seafloor in Pacific—Wide Plate Reorganization in the Paleogene; American Geophysical Union: Washington, DC, USA, 2019; Fall Meeting, 2019, #T51A-02. [Google Scholar]
- Werner, R.; Hoernle, K.; Hauff, F.; Portnyagin, M.; Yogodzinsky, G.; Ziegler, A. (Eds.) RV SONNE Fahrtbericht/Cruise Report SO249 BERING–Origin and Evolution of the Bering Sea: An Integrated Geochronological, Volcanological, Petrological and Geochemical Approach, Leg 1: Dutch Harbor (U.S.A.)-Petropavlovsk-Kamchatsky (Russia), 05.06.2016–15.07.2016, Leg 2: Petropavlovsk-Kamchatsky (Russia)-Tomakomai (Japan), 16.07.2016–14.08.2016. Geomar Report, N. Ser. 030; Geomar Helmholtz-Zentrum fьr Ozeanforschung: Kiel, Germany, 2016; p. 451. [Google Scholar]
- Mikhailik, P.E.; Khanchuk, A.I.; Mikhailik, E.V.; Rashidov, V.A.; Savelev, D.P.; Zarubina, N.V. Ferromanganese Crusts of the North Pacific Ocean. Russ. J. Pac. Geol. 2023, 17, 101–133. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green- technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- McLennan, S.M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In Geochemistry and Mineralogy of the Rare Earth Elements. Review Mineralogy; Lipin, B.R., McKay, G.A., Eds.; De Gruyter: Berlin, Germany, 1989; Volume 21, pp. 169–200. [Google Scholar]
- Bau, M.; Schmidt, K.; Koschinsky, A.; Hein, J.R.; Kuhn, T.; Usui, A. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 2014, 381, 1–9. [Google Scholar] [CrossRef]
- Koschinsky, A.; Hein, J.R. Uptake of elements from seawater by ferromanganese crusts: Solid phase associations and seawater speciation. Mar. Geol. 2003, 198, 331–351. [Google Scholar] [CrossRef]
- Jacobsen, S.B.; Wasserburg, G.J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 1980, 50, 139–155. [Google Scholar] [CrossRef]
- Piepgras, D.J.; Jacobsen, S.B. The isotopic composition of neodymium in the North Pacific. Geochim. Et Cosmochim. Acta 1988, 52, 1373–1381. [Google Scholar] [CrossRef]
- Ling, H.F.; Burton, K.W.; O’nions, R.K.; Kamber, B.S.; von Bla, N.F.; Gibb, A.J.; Hein, J.R. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth Planet. Sci. Lett. 1997, 146, 1–12. [Google Scholar] [CrossRef]
- McArthur, J.M.; Howarth, R.J.; Shields, G.A.; Zhou, Y. Chapter 7. Strontium isotope stratigraphy. In Geologic Time Scale; Gradstein, F., Ogg, G., Schmitz, D., Ogg, M., Eds.; Elsevier: Amsterdam, The Netherland, 2020; pp. 211–238. [Google Scholar] [CrossRef]
- Henderson, G.M.; Burton, K.W. Using (234U/238U) to Assess Diffusion Rates of Isotope Tracers in Ferromanganese Crusts. Earth Planet. Sci. Lett. 1999, 70, 169–179. [Google Scholar] [CrossRef]
- Gutjahr, M.; Frank, M.; Stirling, C.H.; Klemm, V.; van de Flierdt, T.; Halliday, A.N. Reliable extraction of a deepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments. Chem. Geol. 2007, 242, 351–370. [Google Scholar] [CrossRef]
- Khanchuk, A.I.; Mikhailik, P.E.; Mikhailik, E.V.; Zarubina, N.V.; Blokhin, M.G. Peculiarities of the Distribution of Rare Earth Elements and Yttrium in Mineral Phases of the Ferromanganese Crusts from the Detroit Guyot (Pacific Ocean). Dokl. Earth Sci. 2015, 465, 1243–1247. [Google Scholar] [CrossRef]
- Bau, M.; Koschinsky, A. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochem. J. 2009, 43, 37–47. [Google Scholar] [CrossRef]
- Jiang, X.; Lin, X.; Yao, D.; Guo, W. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts. Sci. China Earth Sci. 2011, 54, 197–203. [Google Scholar] [CrossRef]
- Conrad, T.A.; Nielsen, S.G.; Peucker-Ehrenbrink, B.; Blusztajn, J.; Winslow, D.; Hein, J.R.; Paytan, A. Reconstructing the evolution of the submarine Monterey Canyon System from Os, Nd, and Pb isotopes in hydrogenetic Fe-Mn crusts. Geochem. Geophys. Geosystems 2017, 18, 3946–3963. [Google Scholar] [CrossRef]
- Benn, D.I.; Evans, D.J.A. Glaciers & Glaciation; Routledge: Abingdon, UK, 2014. [Google Scholar]
- Ruttenberg, K.C. The global phosphorus cycle. Treatise Geochem. 2003, 8, 682. [Google Scholar] [CrossRef]
- Sancetta, C.; Robinson, S.W. Diatom evidence on Wisconsin and Holocene events in the Bering Sea. Quat. Res. 1983, 20, 232–245. [Google Scholar] [CrossRef]
- Tanaka, S.; Takahashi, K. Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 2131–2149. [Google Scholar] [CrossRef]
- Smirnova, M.A.; Kazarina, G.K.; Matul, A.G.; Max, L. Diatom evidence for paleoclimate changes in the northwestern Pacific during the last 20000 years. Oceanology 2015, 55, 383–389. [Google Scholar] [CrossRef]
- Horikawa, K.; Martin, E.E.; Asahara, Y.; Sagawa, T. Limits on conservative behavior of Nd isotopes in seawater assessed from analysis of fish teeth from Pacific core tops. Earth Planet. Sci. Lett. 2011, 310, 119–130. [Google Scholar] [CrossRef]
- Hu, R.; Piotrowski, A.M.; Bostock, H.C.; Crowhurst, S.; Rennie, V. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum. Earth Planet. Sci. Lett. 2016, 447, 130–138. [Google Scholar] [CrossRef]
- Koschinsky, A.; Halbach, P. Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochim. Et Cosmochim. Acta 1995, 59, 5113–5132. [Google Scholar] [CrossRef]
- Johanneson, K.H.; Lyons, W.B.; Stetzenbach, K.J.; Byrne, R.H. The solubility control of rare earth elements in natural terrestrial waters and the significance of PO43− and CO32− in limiting dissolved rare earth concentrations: A review of recent information. Aquat. Geochem. 1995, 1, 157–173. [Google Scholar] [CrossRef]
- Dubinin, A.V. Geochemistry of Oceanic Rare-Earth Elements; Volkov, I.I., Ed.; Nauka: Moscow, Russia, 2006; 360p, ISBN 5-02-033745-5. (In Russian) [Google Scholar]
- Byrne, R.H. Inorganic speciation of dissolved elements in seawater: The influence of pH on concentration ratios. Geochem. Trans. 2002, 3, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, S.; Cao, J.; Deng, Y.; Wei, Z.; Li, Y.; Tian, D.; Hu, G. Influence of Phosphatization in REY Geochemistry in Ferromanganese Crusts in Line Islands, Central Pacific. Minerals 2023, 13, 647. [Google Scholar] [CrossRef]
- Zhao, K.D.; Jiang, S.Y.; Zheng, X.Y.; Chen, T.Y.; Ling, H.F. Nd isotope evolution of ocean waters and implications for paleo-ocean circulation. Earth Sci. Front. 2009, 16, 160–171, (In Chinese with English abstract). [Google Scholar]
- VanLaningham, S.; Pisias, N.G.; Duncan, R.A.; Clift, P.D. Glacial–interglacial sediment transport to the Meiji Drift, northwest Pacific Ocean: Evidence for timing of Beringian outwashing. Earth Planet. Sci. Lett. 2009, 277, 64–72. [Google Scholar] [CrossRef]
- Jang, K.; Huh, Y.; Han, Y. Diagenetic overprint on authigenic Nd isotope records: A case study of the Bering Slope. Earth Planet. Sci. Lett. 2018, 498, 247–256. [Google Scholar] [CrossRef]
- Pettke, T.; Halliday, A.N.; Hall, C.M.; Rea, D.K. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr. Earth Planet. Sci. Lett. 2000, 178, 397–413. [Google Scholar] [CrossRef]
- Yi, L.; Li, Y.; Mikhailik, P.; Qi, Y.; Deng, C. Magnetic and geochemical scanning reveals growth history of marine ferromanganese crust on Detroit Seamount, Northwest Pacific since the Early Miocene. Quat. Int. 2023, in press. [CrossRef]
No. | Sampling Position | Latitude, N | Longitude, W | Water Depth, m | Structure | Minerals (a) |
---|---|---|---|---|---|---|
Fracture Zones | ||||||
DR23-5 | 0–2 mm | 48°44′17″ | 177°30′14″ | 5088–4510 | Rat | Vernadite, 10 Å Manganate |
DR59-11/1 | 0–2 mm | 51°1′26″ | 172°1′19″ | 4274–3814 | Stalemate | Quartz, Plagioclase, Vernadite (?) |
DR59-11/2 | 31–36 mm | Vernadite | ||||
Emperor Guyots | ||||||
DR65-6/1 | 0–2 mm | 50°31′59″ | 167°28′59″ | 3313–2897 | Detroit | Vernadite |
DR65-6/2 | 20–25 mm | Vernadite | ||||
DR70-9/1 | 0–2 mm | 50°1′1″ | 167°30′32″ | 3685–3278 | Hanzei | Vernadite |
DR70-9/2 | 60–65 mm | Vernadite |
Element | DR65-6/1 | DR65-6/2 | DR70-9/1 | DR70-9/2 | DR23-5 | DR59-11/1 | DR59-11/2 |
---|---|---|---|---|---|---|---|
Mn (%) | 10.2 | 15.0 | 10.3 | 21.8 | 15.8 | 4.06 | 16.2 |
Fe (%) | 20.2 | 22.5 | 21.2 | 21.5 | 11.8 | 16.2 | 20.0 |
Ca (%) | 1.70 | 1.85 | 1.77 | 2.15 | 2.23 | 2.07 | 1.84 |
Si (%) | 14.3 | 9.81 | 13.6 | 5.32 | 15.5 | 21.5 | 10.8 |
Al (%) | 2.95 | 1.87 | 2.82 | 0.87 | 3.82 | 4.63 | 2.02 |
Co (ppm) | 1198 | 1291 | 1278 | 2490 | 1172 | 500 | 1176 |
Ni (ppm) | 744 | 1582 | 799 | 3254 | 3607 | 226 | 1297 |
Cu (ppm) | 351 | 472 | 498 | 1109 | 2596 | 284 | 637 |
Sr (ppm) | 1075 | 1334 | 1084 | 1707 | 833 | 659 | 1200 |
Y (ppm) | 152 | 213 | 154 | 225 | 90.1 | 67.2 | 196 |
La (ppm) | 237 | 347 | 249 | 408 | 132 | 125 | 317 |
Ce (ppm) | 780 | 1131 | 890 | 1841 | 958 | 397 | 930 |
Pr (ppm) | 55.0 | 77.0 | 59.9 | 111 | 38.0 | 31.9 | 78.4 |
Nd (ppm) | 224 | 315 | 240 | 400 | 149 | 129 | 315 |
Sm (ppm) | 52.3 | 71.0 | 55.0 | 93.9 | 39.1 | 29.9 | 74.7 |
Eu (ppm) | 13.2 | 18.0 | 12.6 | 20.9 | 9.58 | 7.34 | 18.5 |
Gd (ppm) | 58.2 | 78.0 | 54.3 | 88.7 | 38.1 | 30.1 | 79.3 |
Tb (ppm) | 8.12 | 11.5 | 8.33 | 14.0 | 5.83 | 4.34 | 11.6 |
Dy (ppm) | 44.3 | 62.8 | 44.8 | 73.1 | 30.8 | 22.6 | 62.3 |
Ho (ppm) | 8.14 | 11.8 | 8.25 | 13.5 | 5.35 | 3.95 | 11.5 |
Er (ppm) | 22.3 | 32.5 | 22.2 | 36.9 | 14.7 | 10.5 | 31.0 |
Tm (ppm) | 3.07 | 4.47 | 3.06 | 5.27 | 2.11 | 1.42 | 4.28 |
Yb (ppm) | 19.4 | 28.6 | 19.4 | 32.7 | 13.0 | 9.25 | 27.1 |
Lu (ppm) | 2.82 | 4.09 | 2.81 | 4.79 | 1.87 | 1.32 | 3.90 |
∑REE (ppm) | 1529 | 2193 | 1670 | 3147 | 1439 | 804 | 1965 |
Ce/Ce* | 1.57 | 1.59 | 1.68 | 1.98 | 3.10 | 1.44 | 1.36 |
Eu/Eu* | 1.11 | 1.13 | 1.08 | 1.08 | 1.16 | 1.15 | 1.13 |
εNd | −3.3 ± 0.1 | −3.2 ± 0.1 | −3.3 ± 0.1 | −4.4 ± 0.1 | −3.2 ± 0.2 | −2.3 ± 0.2 | −3.3 ± 0.1 |
87Sr/86Sr | 0.708780 ± 0.000006 | 0.709110 ± 0.000004 | 0.709047 ± 0.000007 | 0.709141 ± 0.000008 | 0.708563 ± 0.000010 | 0.707973 ± 0.000005 | 0.709021 ± 0.000010 |
DR65-6/1 | DR65-6/2 | |||||||
(a) | I | II | III | IV | I | II | III | IV |
εNd | −3.0 | −3.7 | −4.8 | −3.6 | −3.2 | −3.2 | −3.3 | −2.2 |
±σ | 0.2 | 0.3 | 0.4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 |
87Sr/86Sr | 0.709182 | 0.709188 | 0.709083 | 0.706693 | 0.709204 | 0.709173 | 0.708891 | 0.705495 |
±σ | 0.000006 | 0.000007 | 0.000009 | 0.000012 | 0.000011 | 0.000006 | 0.000008 | 0.000007 |
DR70-9/1 | DR70-9/2 | |||||||
(a) | I | II | III | IV | I | II | III | IV |
εNd | −3.6 | −3.8 | −3.0 | −3.7 | −4.2 | −4.2 | −4.5 | −4.1 |
±σ | 0.1 | 0.2 | 0.3 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 |
87Sr/86Sr | 0.709196 | 0.709186 | 0.709167 | 0.706106 | 0.709183 | 0.709188 | 0.708961 | 0.706727 |
±σ | 0.000009 | 0.000007 | 0.000008 | 0.000006 | 0.000006 | 0.000010 | 0.000012 | 0.000017 |
DR59-11/1 | DR59-11/2 | |||||||
(a) | I | II | III | IV | I | II | III | IV |
εNd | −4.4 | −3.0 | −4.7 | −1.8 | −3.0 | −3.4 | −1.9 | −2.9 |
±σ | 0.3 | 0.2 | 0.5 | 0.1 | 0.2 | 0.2 | 1.5 | 0.3 |
87Sr/86Sr | 0.709184 | 0.709197 | 0.708908 | 0.704898 | 0.709210 | 0.709161 | 0.709115 | 0.705741 |
±σ | 0.000007 | 0.000008 | 0.000018 | 0.000008 | 0.000012 | 0.000019 | 0.000003 | 0.000009 |
DR23-5 | ||||||||
(a) | I | II | III | IV | ||||
εNd | −3.6 | −3.4 | −3.4 | −3.0 | ||||
±σ | 0.4 | 0.2 | 0.3 | 0.3 | ||||
87Sr/86Sr | 0.709195 | 0.709178 | 0.708978 | 0.706433 | ||||
±σ | 0.000006 | 0.000008 | 0.000013 | 0.000005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailik, P.; Vishnevskaya, I.; Yi, L.; Soloshenko, N.; Pellinen, V. Sr and Nd Isotopes in Mineral Fractions of Ferromanganese Crusts from the Northernmost Pacific. J. Mar. Sci. Eng. 2023, 11, 1920. https://doi.org/10.3390/jmse11101920
Mikhailik P, Vishnevskaya I, Yi L, Soloshenko N, Pellinen V. Sr and Nd Isotopes in Mineral Fractions of Ferromanganese Crusts from the Northernmost Pacific. Journal of Marine Science and Engineering. 2023; 11(10):1920. https://doi.org/10.3390/jmse11101920
Chicago/Turabian StyleMikhailik, Pavel, Irina Vishnevskaya, Liang Yi, Natalia Soloshenko, and Vadim Pellinen. 2023. "Sr and Nd Isotopes in Mineral Fractions of Ferromanganese Crusts from the Northernmost Pacific" Journal of Marine Science and Engineering 11, no. 10: 1920. https://doi.org/10.3390/jmse11101920
APA StyleMikhailik, P., Vishnevskaya, I., Yi, L., Soloshenko, N., & Pellinen, V. (2023). Sr and Nd Isotopes in Mineral Fractions of Ferromanganese Crusts from the Northernmost Pacific. Journal of Marine Science and Engineering, 11(10), 1920. https://doi.org/10.3390/jmse11101920