Spatial Variability in the Primary Production Rates and Biomasses (Chl a) of Sea Ice Algae in the Canadian Arctic–Greenland Region: A Review
Abstract
:1. Introduction
2. Physical and Biological Parameters of the Sea Ice
2.1. Ice, Snow, Production Rates, and Chl a
2.2. Nutrients in Sea Ice and in the Water Below
2.3. Primary Production at Other Arctic sites
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wratten, E.E.; Cooley, S.W.; Mann, P.J.; Whalen, D.; Fraser, P.; Lim, M. Physiographic controls on landfast ice variability from 20 years of maximum extents across the Northwest Canadian Arctic. MDPI Open Access J. 2022, 14, 2175. [Google Scholar] [CrossRef]
- Karami, M.P.; Myers, P.G.; de Vernal, A.; Tremblay, L.B.; Hu, X. The role of Arctic gateways on sea ice and circulation in the Arctic and North Atlantic Oceans: A sensitivity study with an ocean-sea-ice model. Clim. Dyn. 2021, 57, 2129–2151. [Google Scholar] [CrossRef]
- Francis, J.A.; Wu, B. Why has no new record-minimum Arctic sea-ice extent occurred since September 2012? Environ. Res. Lett. 2020, 15, 114034. [Google Scholar] [CrossRef]
- Parkinson, C.L. Spatially mapped reductions in the length of the Arctic sea ice season. Geophys. Res. Lett. 2014, 41, 4316–4322. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Park, H.; Stuecker, M.F.; Yeh, S. Record low Arctic sea ice extent in 2012 linked to two-year La Niña-driven sea surface temperature pattern. Geophys. Res. Lett. 2022, 49, e2022GL098385. [Google Scholar] [CrossRef]
- Steiner, N.S.; Bowman, J.; Campbell, K.; Chierici, M.; Eronen-Rasimus, E.; Falardeau, M.; Flores, H.; Fransson, A.; Herr, H.; Insley, S.J.; et al. Climate change impacts on sea-ice ecosystems and associated ecosystem services. Elem. Sci. Anthr. 2021, 9, 00007. [Google Scholar] [CrossRef]
- Jahn, A.; Kay, J.E.; Holland, M.M.; Hall, D.M. How predictable is the timing of a summer ice-free Arctic? Geophys. Res. Lett. 2016, 43, 9113–9120. [Google Scholar] [CrossRef]
- Lund-Hansen, L.C.; Søgaard, D.H.; Sorrell, B.K.; Gradinger, R.; Meiners, K.M. Arctic Sea Ice Ecology; Springer: Berlin, Germany, 2020; p. 178. Available online: https://link.springer.com/book/10.1007/978-3-030-37472-3 (accessed on 28 October 2023).
- Kohlbach, D.; Schaafsma, F.L.; Graeve, M.; Lebreton, B.; Lange, B.A.; David, C.; Vortkamp, M.; Flores, H. Strong linkage of polar cod (Boreogadus saida) to sea ice algae-produced carbon: Evidence from stomach content, fatty acid and stable isotope analyses. Prog. Oceanogr. 2017, 152, 62–74. [Google Scholar] [CrossRef]
- Kaartokallio, H.; Søgaard, D.; Norman, L.; Rysgaard, S.; Tison, J.L.; Delille, B.; Thomas, D.N. Short-term variability in bacterial abundance, cell properties, and incorporation of leucine and thymidine in subarctic sea ice. Aquat. Microb. Ecol. 2013, 71, 57–73. [Google Scholar] [CrossRef]
- Luthanen, A.; E-Rasimus, E.; Oksanen, H.A.; Tison, J.-L.; Delille, B.; Dieckmann, G.; Rintala, J.-M.; Bamford, D.H. The first known virus isolates from Antarctic sea ice have complex infection patterns. FEMS Microbiol. Ecol. 2017, 94, 2018. [Google Scholar] [CrossRef]
- Hassett, B.T.; Ducluzeau, A.L.L.; Collins, R.E.; Gradinger, R. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic. Environ. Microbiol. 2017, 19, 475–484. [Google Scholar] [CrossRef]
- Bluhm, B.A.; Swadling, K.M.; Gradinger, R. Sea Ice, 3rd ed.; Thomas, D.N., Ed.; Wiley Blackwell: Oxford, UK, 2017; 652p. [Google Scholar]
- Horner, R.; Schrader, G. Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. ARCTIC 1982, 35, 485–503. [Google Scholar] [CrossRef]
- Lund-Hansen, L.C.; Hawes, I.; Hancke, K.; Salmansen, N.; Nielsen, J.R.; Balslev, L.; Sorrell, B.K. Effects of increased irradiance on biomass, photobiology, nutritional quality, and pigment composition of Arctic sea ice algae. Mar. Ecol. Prog. Ser. 2020, 648, 95–110. [Google Scholar] [CrossRef]
- Arrigo, K. Sea ice as a habitat for primary producers. In Sea Ice, 3rd ed.; Thomas, D.N., Ed.; Wiley Blackwell: Oxford, UK, 2017; 652p. [Google Scholar]
- Michel, C.; Nielsen, T.G.; Nozais, C.; Gosselin, M. Significance of sedimentation and grazing by ice micro- and meiofauna for carbon cycling in annual sea ice (northern Baffin Bay). Aquat. Microb. Ecol. 2002, 30, 57–68. [Google Scholar] [CrossRef]
- Michel, C.; Ingram, R.; Harris, L. Variability in oceanographic and ecological processes in the Canadian Arctic Archipelago. Prog. Oceanogr. 2006, 71, 379–401. [Google Scholar] [CrossRef]
- Michel, C.; Legendre, L.; Therriault, J.-C.; Demers, S.; Vandevelde, T. Springtime coupling between ice algal and phytoplankton assemblages in southeastern Hudson Bay, Canadian Arctic. Polar Biol. 1993, 13, 441–449. [Google Scholar] [CrossRef]
- Olsen, L.M.; Laney, S.R.; Duarte, P.; Kauko, H.M.; Fernández-Méndez, M.; Mundy, C.J.; Rösel, A.; Meyer, A.; Itkin, P.; Cohen, L.; et al. The seeding of ice algal blooms in Arctic pack ice: The multiyear ice seed repository hypothesis. J. Geophys. Res. Biogeosciences 2017, 122, 1529–1548. [Google Scholar] [CrossRef]
- Boetius, A.; Albrecht, S.; Bakker, K.; Bienhold, C.; Felden, J.; Fernández-Méndez, M.; Hendricks, S.; Katlein, C.; Lalande, C.; Krumpen, T.; et al. Export of Algal Biomass from the Melting Arctic Sea Ice. Science 2013, 339, 1430–1432. [Google Scholar] [CrossRef]
- Smith, R.E.H.; Anning, J.; Pierre Clement Cota, G. Abundance and production of ice algae in Resolute Passage, Canadian Arctic. Mar. Ecol. Prog. 1988, 48, 251–263. [Google Scholar] [CrossRef]
- Nozais, C.; Gosselin, M.; Michel, C.; Tita, G. Abundance, biomass, composition and grazing impact of the sea-ice meiofauna in the North Water, northern Baffin Bay. Mar. Ecol. Prog. Ser. 2001, 217, 235–250. [Google Scholar] [CrossRef]
- Rysgaard, S.; Nielsen, T.G.; Hansen, B.W. Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland. Mar. Ecol. Prog. Ser. 1999, 179, 13–25. [Google Scholar] [CrossRef]
- Smith, R.E.H.; Herman, A.W. Productivity of sea ice algae: In situ vs. incubator methods. J. Mar. Syst. 1991, 2, 97–110. [Google Scholar] [CrossRef]
- Lund-Hansen, L.C.; Petersen, C.M.; Søgaard, D.H.; Sorrell, B.K. A Comparison of Decimeter Scale Variations of Physical and Photobiological Parameters in a Late Winter First-Year Sea Ice in Southwest Greenland. J. Mar. Sci. Eng. 2021, 9, 60. [Google Scholar] [CrossRef]
- Gosselin, M.; Levasseur, M.; Wheeler, P.A.; Horner, R.A.; Booth, B.C. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep. Sea Res. Part II Top. Stud. Oceanogr. 1997, 44, 1623–1644. [Google Scholar] [CrossRef]
- Booth, J. The epontic algal community of the ice edge zone and its significance to the Davis Strait ecosystem. ARCTIC 1984, 37, 234–243. [Google Scholar] [CrossRef]
- Dupont, F. Impact of sea-ice biology on overall primary production in a biophysical model of the pan-Arctic Ocean. J. Geophys. Res. Oceans 2012, 117, COOD17. [Google Scholar] [CrossRef]
- Fernández-Méndez, M.; Katlein, C.; Rabe, B.; Nicolaus, M.; Peeken, I.; Bakker, K.; Flores, H.; Boetius, A. Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences 2015, 12, 3525–3549. [Google Scholar] [CrossRef]
- Gradinger, R. Sea-ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 1201–1212. [Google Scholar] [CrossRef]
- Haecky, P.; Andersson, A. Primary and bacterial production in sea ice in the northern Baltic Sea. Aquat. Microb. Ecol. 1999, 20, 107–118. [Google Scholar] [CrossRef]
- Horner, R.; Ackley, S.F.; Dieckmann, G.S.; Gulliksen, B.; Hoshiai, T.; Legendre, L.; Melnikov, I.A.; Reeburgh, W.S.; Spindler, M.; Sullivan, C.W. Ecology of sea ice biota. Polar Biol. 1992, 12, 417–427. [Google Scholar] [CrossRef]
- Mock, T.; Gradinger, R.R. Determination of Arctic ice algal production with a new in situ incubation technique. Mar. Ecol. Prog. Ser. 1999, 177, 15–26. [Google Scholar] [CrossRef]
- Mundy, C.J.; Gosselin, M.; Gratton, Y.; Brown, K.; Galindo, V.; Campbell, K.; Levasseur, M.; Barber, D.; Papakyriakou, T.; Bélanger, S. Role of environmental factors on phytoplankton bloom initiation under landfast sea ice in Resolute Passage, Canada. Mar. Ecol. Prog. Ser. 2014, 497, 39–49. [Google Scholar] [CrossRef]
- Mikkelsen, D.M.; Rysgaard, S.; Glud, R.N. Microalgal composition and primary production in Arctic sea ice: A seasonal study from Kobbefjord (Kangerluarsunnguaq), West Greenland. Mar. Ecol. Prog. Ser. 2008, 368, 65–74. [Google Scholar] [CrossRef]
- Lund-Hansen, L.C.; Hawes, I.; Sorrell, B.K.; Nielsen, M.H. Removal of snow cover inhibits spring growth of Arctic ice algae through physiological and behavioral effects. Polar Biol. 2014, 37, 471–481. [Google Scholar] [CrossRef]
- Leu, E.; Mundy, C.; Assmy, P.; Campbell, K.; Gabrielsen, T.; Gosselin, M.; Juul-Pedersen, T.; Gradinger, R. Arctic spring awakening–Steering principles behind the phenology of vernal ice algal blooms. Prog. Oceanogr. 2015, 139, 151–170. [Google Scholar] [CrossRef]
- Nielsen, E.S. The use of radio-active carbon (14C) for measuring organic production in the sea. ICES J. Mar. Sci. 1952, 18, 117–140. [Google Scholar] [CrossRef]
- Lund-Hansen, L.C.; Hawes, I.; Nielsen, M.H.; Dahllöf, I.; Sorrell, B.K. Summer meltwater and spring sea ice primary production, light climate and nutrients in an Arctic estuary, Kangerlussuaq, west Greenland. Arctic Antarct. Alp. Res. 2018, 50, S100025. [Google Scholar] [CrossRef]
- Matthes, L.; Ehn, J.; Dalman, L.; Babb, D.; Peeken, I.; Harasyn, M.; Kirillov, S.; Lee, J.; Bélanger, S.; Tremblay, J.; et al. Environmental drivers of spring primary production in Hudson Bay. Elementa Sci. Anthr. 2021, 9, 00160. [Google Scholar] [CrossRef]
- Sanz-Martín, M.; Vernet, M.; Cape, M.R.; Mesa, E.; Delgado-Huertas, A.; Reigstad, M.; Wassmann, P.; Duarte, C.M. Relationship Between Carbon- and Oxygen-Based Primary Productivity in the Arctic Ocean, Svalbard Archipelago. Front. Mar. Sci. 2019, 6, 468. [Google Scholar] [CrossRef]
- Bergmann, M.; Welch, H.; Butler-Walker, J.; Siferd, T. Ice algal photosynthesis at Resolute and Saqvaqjuac in the Canadian Arctic. J. Mar. Syst. 1991, 2, 43–52. [Google Scholar] [CrossRef]
- Hsiao, S. Spatial and seasonal variations in primary production of sea ice microalgae and phytoplankton in Frobisher Bay, Arctic Canada. Mar. Ecol. Prog. Ser. 1988, 44, 275–285. [Google Scholar] [CrossRef]
- Rysgaard, S.; Kühl, M.; Glud, R.N.; Hansen, J.W. Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland). Mar. Ecol. Prog. Ser. 2001, 223, 15–26. [Google Scholar] [CrossRef]
- Riedel, A.; Michel, C.; Gosselin, M.; LeBlanc, B. Winter–spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean. J. Mar. Syst. 2008, 74, 918–932. [Google Scholar] [CrossRef]
- Campbell, K.; Mundy, C.; Landy, J.; Delaforge, A.; Michel, C.; Rysgaard, S. Community dynamics of bottom-ice algae in Dease Strait of the Canadian Arctic. Prog. Oceanogr. 2016, 149, 27–39. [Google Scholar] [CrossRef]
- Rysgaard, S.; Glud, R.N.; Sejr, M.K.; Blicher, M.E.; Stahl, H.J. Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol. 2007, 31, 527–537. [Google Scholar] [CrossRef]
- Glud, R.N.; Rysgaard, S.; Kühl, M. A laboratory study on O2 dynamics and photosynthesis in ice algal communities: Quantification by microsensors, O2 exchange rates, 14C incubations and a PAM fluorometer. Aquat. Microb. Ecol. 2002, 27, 301–311. [Google Scholar] [CrossRef]
- Perovich, D.; Cota, G.; Maykut, G.; Grenfell, T. Bio-optical observations of first-year Arctic sea ice. Geophys. Res. Lett. 1993, 20, 1059–1062. [Google Scholar] [CrossRef]
- Søgaard, D.H.; Kristensen, M.; Rysgaard, S.; Glud, R.N.; Hansen, P.J.; Hilligsøe, K.M. Autotrophic and heterotrophic activity in Arctic first-year sea ice: Seasonal study from Malene Bight, SW Greenland. Mar. Ecol. Prog. Ser. 2010, 419, 31–45. [Google Scholar] [CrossRef]
- Hancke, K.; Lund-Hansen, L.C.; Lamare, M.L.; Pedersen, S.H.; King, M.D.; Andersen, P.; Sorrell, B.K. Extreme low light requirement for algae growth underneath sea ice: A case study from Station Nord, NE Greenland. J. Geophys. Res. Oceans 2018, 123, 985–1000. [Google Scholar] [CrossRef]
- Glud, R.N.; Rysgaard, S.; Kühl, M.; Hansen, J.W. The sea ice in Young Sound: Implications for carbon cycling. Carbon cycling in Arctic marine ecosystems: Case study Young Sound. Meddr. Grønland 2007, 58, 62–85. [Google Scholar]
- Welch, H.E.; Bergmann, M.A. Seasonal development of ice algae and its prediction from environmental factors near Resolute, NWT, Canada. Can. J. Fish. Aquat. Sci. 1989, 46, 1793–1804. [Google Scholar] [CrossRef]
- Rózanska, M.; Gosselin, M.; Poulin, M.; Wiktor, J.M.; Michel, C. Influence of environmental factors on the development of bottom ice protist communities during the winter–spring transition. Mar. Ecol. Prog. Ser. 2009, 386, 43–59. [Google Scholar] [CrossRef]
- Lund-Hansen, L.C.; Bendtsen, J.; Stratmann, T.; Tonboe, R.; Olsen, S.M.; Markager, S.; Sorrell, B.K. Will low primary production rates in the Amundsen Basin (Arctic Ocean) remain low in a future ice-free setting, and what governs this production? J. Mar. Syst. 2020, 205, 103287. [Google Scholar] [CrossRef]
- Colombo, M.; Jackson, S.L.; Cullen, J.T.; Orians, K.J. Dissolved iron and manganese in the Canadian Arctic Ocean: On the biogeochemical processes controlling their distributions. Geochim. et Cosmochim. Acta 2020, 277, 150–174. [Google Scholar] [CrossRef]
- Kanna, N.; Toyota, T.; Nishioka, J. Iron and macro-nutrient concentrations in sea ice and their impact on the nutritional status of surface waters in the southern Okhotsk Sea. Prog. Oceanogr. 2014, 126, 44–57. [Google Scholar] [CrossRef]
- Yoshida, K.; Seger, A.; Karsh, K.; Corkill, M.; Heil, P.; McMinn, A.; Suzuki, K. Low Fe availability for photosynthesis of sea-ice algae: Ex situ incubation of the ice diatom Fragilariopsis cylindrus in low-Fe sea ice using an ice tank. Front. Mar. Sci. 2021, 8, 221. [Google Scholar] [CrossRef]
- Dalman, L.A.; Else, B.G.T.; Barber, D.; Carmack, E.; Williams, W.J.; Campbell, K.; Duke, P.J.; Kirillov, S.; Mundy, C.J.; Tremblay, J.-É. Enhanced bottom-ice algal biomass across a tidal strait in the Kitikmeot Sea of the Canadian Arctic. Elementa Sci. Anthr. 2019, 7, 22. [Google Scholar] [CrossRef]
- Hannah, C.G.; Dupont, F.; Dunphy, M. Polynyas and tidal currents in the Canadian Arctic Archipelago. ARCTIC 2009, 62, 83–95. [Google Scholar] [CrossRef]
- Smith, W.O., Jr.; Barber, D. (Eds.) Polynyas: Windows to the World; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 2007; Volume 74, p. 474. [Google Scholar]
- Stirling, I. The importance of polynyas, ice edges, and leads to marine mammals and birds. J. Mar. Syst. 1997, 10, 9–21. [Google Scholar] [CrossRef]
- Klein, B.; LeBlanc, B.; Mei, Z.-P.; Beret, R.; Michaud, J.; Mundy, C.-J.; von Quillfeldt, C.H.; Garneau, M.-È.; Roy, S.; Gratton, Y.; et al. Phytoplankton biomass, production and potential export in the North Water. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 4983–5002. [Google Scholar] [CrossRef]
- Tremblay, J.; Gratton, Y.; Carmack, E.C.; Payne, C.D.; Price, N.M. Impact of the large-scale Arctic circulation and the North Water Polynya on nutrient inventories in Baffin Bay. J. Geophys. Res. Ocean. 2002, 107, 26-21–26-14. [Google Scholar] [CrossRef]
- Ingram, R.G.; Bâcle, J.; Barber, D.G.; Gratton, Y.; Melling, H. An overview of physical processes in the North Water. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 4893–4906. [Google Scholar] [CrossRef]
- Perovich, D.K. Sea ice and sunlight. In Sea Ice, 3rd ed.; Thomas, D.N., Ed.; Wiley Blackwell: Oxford, UK, 2017; pp. 110–137, 652. [Google Scholar] [CrossRef]
- Yoshida, K.; Seger, A.; Kennedy, F.; McMinn, A.; Suzuki, K. Freezing, melting, and light stress on the photophysiology of ice algae ex situ incubation of the ice algae diatom Fragilariaopsis cylindrus (Bacillariophyceae) using an ice tank. J. Phycol. 2020, 56, 1323–1338. [Google Scholar] [CrossRef]
- Randelhoff, A.; Fer, I.; Sundfjord, A.; Tremblay, J.-E.; Reigstad, M. Vertical fluxes of nitrate in the seasonal nitracline of the Atlantic Sector of the Arctic Ocean. J. Geophys. Res. Oceans 2016, 121, 5282–5295. [Google Scholar] [CrossRef]
- Sampei, M.; Fortier, L.; Raimbault, P.; Matsuno, K.; Vet, Y.; Quéguiner LaFond, A.; Babin, M.; Hirawake, T. An esti-mation of the quantitative impacts of copepod grazing on an under sea-ice spring phytoplabnkton bloom in western Baffin Bay, Canadian Arctic. Elem. Sci. Anthr. 2021, 9, 00092. [Google Scholar] [CrossRef]
- Dunbar, M.J.; Acreman, J.C. Standing crops and species composition of diatoms in sea ice From Robeson Channel to the Gulf of St. Lawrence. Ophelia 1980, 19, 61–72. [Google Scholar] [CrossRef]
- Pineault, S.; Tremblay, J.E.; Gosselin, M.; Thomas, H.; Shadwick, E. The isotopic signature of particulate factors and applications for tracing the fate of ice-algae in the Arctic Ocean. J. Geophys. Res. Oceans 2013, 118, 287–300. [Google Scholar] [CrossRef]
- Søgaard, D.H.; Sorrell, B.K.; Sejr, M.K.; Andersen, P.; Rysgaard, S.; Hansen, P.J.; Skyttä, A.; Lemcke, S.; Lund-Hansen, L.C. An under-ice bloom of mixotrophic haptophytes in low nutrient and freshwater-influenced Arctic waters. Sci. Rep. 2021, 11, 2915. [Google Scholar] [CrossRef]
- Søgaard, D.H.; Thomas, D.N.; Rysgaard, S.; Glud, R.N.; Norman, L.; Kaartokallio, H.; Juul-Pedersen, T.; Geilfus, N.-X. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice. Polar Biol. 2013, 36, 1761–1777. [Google Scholar] [CrossRef]
- Andersen, O.G.N. Primary production associated with sea ice at Godhavn, Disko, West Greenland. Ophelia 1977, 16, 205–220. [Google Scholar] [CrossRef]
- Gosselin, M.; Legendre, L.; Therriault, J.C.; Demers, S. Light and nutrient limitation of sea-ice microalgae (Hudson Bay, Canadian Arctic). J. Phycol. 1990, 26, 220–232. [Google Scholar] [CrossRef]
- Gosselin, M.; Legendre, L.; Demers, S.; Ingram, R. Responses of sea-ice microalgae to climatic and fortnightly tidal energy inputs (Manitounuk Sound, Hudson Bay). Can. J. Fish. Aquat. Sci. 1985, 42, 999–1006. [Google Scholar] [CrossRef]
- Lehmann, N.; Kienast, M.; Granger, J.; Bourbonnais, A.; Altabet, M.A.; Tremblay, J. Remote Western Arctic nutrients fuel remineralization in Deep Baffin Bay. Glob. Biogeochem. Cycles 2019, 33, 649–667. [Google Scholar] [CrossRef]
- Lewis, E.L.; Ponton, D.; Legendre, L.; Leblanc, B. Springtime sensible heat, nutrients and phytoplankton in the Northwater Polynya, Canadian Arctic. Cont. Shelf Res. 1996, 16, 1775–1792. [Google Scholar] [CrossRef]
Location | Production Rate (mg C m−2 d−1) | Reference |
---|---|---|
Davis Strait | 0.003–2.3 | [28] |
Pan Arctic PP model | 60–1 | [29] |
Arctic Ocean | 5.8 | [30] |
Arctic Ocean | 0.5–310 | [27] |
Chukchi Sea | 20–30 | [31] |
Beaufort Sea | 4–9 | [31] |
Baltic Sea | 1.0–2.4 | [32] |
Beaufort Sea | 2.8–11.2 | [33] |
Greenland Sea | 0.25–1.71 | [34] |
Resolute Bay (RB) | 20.6–469 | [25] |
Northern Baffin Bay (BB) | 26.3–317 | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, L.M.; Sorrell, B.; Søgaard, D.H.; Lund-Hansen, L.C. Spatial Variability in the Primary Production Rates and Biomasses (Chl a) of Sea Ice Algae in the Canadian Arctic–Greenland Region: A Review. J. Mar. Sci. Eng. 2023, 11, 2063. https://doi.org/10.3390/jmse11112063
García LM, Sorrell B, Søgaard DH, Lund-Hansen LC. Spatial Variability in the Primary Production Rates and Biomasses (Chl a) of Sea Ice Algae in the Canadian Arctic–Greenland Region: A Review. Journal of Marine Science and Engineering. 2023; 11(11):2063. https://doi.org/10.3390/jmse11112063
Chicago/Turabian StyleGarcía, Laura Martín, Brian Sorrell, Dorte Haubjerg Søgaard, and Lars Chresten Lund-Hansen. 2023. "Spatial Variability in the Primary Production Rates and Biomasses (Chl a) of Sea Ice Algae in the Canadian Arctic–Greenland Region: A Review" Journal of Marine Science and Engineering 11, no. 11: 2063. https://doi.org/10.3390/jmse11112063
APA StyleGarcía, L. M., Sorrell, B., Søgaard, D. H., & Lund-Hansen, L. C. (2023). Spatial Variability in the Primary Production Rates and Biomasses (Chl a) of Sea Ice Algae in the Canadian Arctic–Greenland Region: A Review. Journal of Marine Science and Engineering, 11(11), 2063. https://doi.org/10.3390/jmse11112063