Enhancing Underwater Robot Manipulators with a Hybrid Sliding Mode Controller and Neural-Fuzzy Algorithm
Abstract
:1. Introduction
2. Robot Manipulator of Fancon 1263 Model
2.1. A Brief Overview of the Robotic Arm in This Research Paper
2.2. Forward Kinematics
2.3. Inverse Kinematics
2.4. Noise When Working Underwater
3. Adaptive Sliding Control Using Neural Network and Logic Fuzzy Controller
3.1. Sliding Mode Control
3.2. Sliding Mode Control-Fuzzy Logic Control
3.3. Sliding Control Using RBFNN Network
3.4. Adaptive Sliding Controller Using Fuzzy Neural Model
4. Results and Discussion
4.1. Simulation and Simulation Results
4.2. Modeling Noise Signal
4.2.1. Modeling Disturbances
Deterministic Disturbances
Random Disturbances
4.2.2. Origin, Amplitude, Frequency, and Impact of Disturbances
4.2.3. Disturbance Calculation Formulas
4.2.4. MATLAB Simulation Results
4.3. Applying Linear Parameter-Varying and Kalman Models to Underwater Robot Manipulators
4.3.1. Approach to the LPV (Linear Parameter-Varying) Model [48,49] for Underwater Robotic Arms
4.3.1.1. Introduction to the LPV Model
4.3.1.2. Construction of the LPV Model
4.3.2. Development of the Extended Kalman Filter (EKF) for Underwater Robotic Arms
4.3.2.1. Introduction to the Extended Kalman Filter (EKF)
4.3.2.2. Extended Kalman Filter (EKF) Formula
4.3.3. Simulation of LPV Combined with Kalman
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ROV | Remotely Operated Vehicle |
RBFNN | Radial Basis Function Neural Networks |
SMC | Sliding Mode Control |
FIS | Fuzzy Inference System |
LPV | Linear Parameter Varying |
EKF | Extended Kalman Filter |
CNN | Convolutional Neural Networks |
LSTM | Long Short-Term Memory |
FNN | Fuzzy Neural Network |
PID | Proportional Integral Derivative |
Appendix A
Algorithm A1. Fuzzy set algorithm. |
[System] Name = ‘Fuzzyset’ Type = ‘mamdani’ Version = 2.0 NumInputs = 1 NumOutputs = 1 NumRules = 7 AndMethod = ‘min’ OrMethod = ‘max’ ImpMethod = ‘min’ AggMethod = ‘max’ DefuzzMethod = ‘centroid’ [Si] Name = ‘|Si|’ Range = [0 1] NumMFs = 7 MF1 = ‘NB’:’gaussmf’, [0.07078 0] MF2 = ‘NM’:’gaussmf’, [0.07078 0.1667] MF3 = ‘NS’:’gaussmf’, [0.07078 0.3333] MF4 = ‘Z’:’gaussmf’, [0.07078 0.5] MF5 = ‘PS’:’gaussmf’, [0.07078 0.6667] MF6 = ‘PM’:’gaussmf’, [0.07078 0.8333] MF7 = ‘PB’:’gaussmf’, [0.07078 1] [Ki] Name = ‘Ki’ Range = [0 1] NumMFs = 7 MF1 = ‘NB’:’gaussmf’, [0.07078 0] MF2 = ‘NM’:’gaussmf’, [0.07078 0.1667] MF3 = ‘NS’:’gaussmf’, [0.07078 0.3333] MF4 = ‘Z’:’gaussmf’, [0.07078 0.5] MF5 = ‘PS’:’gaussmf’, [0.07078 0.6667] MF6 = ‘PM’:’gaussmf’, [0.07078 0.8333] MF7 = ‘PB’:’gaussmf’, [0.07078 1] [Rules] 1, 1 (1): 1 2, 2 (1): 1 3, 3 (1): 1 4, 4 (1): 1 5, 5 (1): 1 6, 6 (1): 1 7, 7 (1): 1 |
References
- Capocci, R.; Dooly, G.; Omerdić, E.; Coleman, J.; Newe, T.; Toal, D. Inspection-Class Remotely Operated Vehicles—A Review. J. Mar. Sci. Eng. 2017, 5, 13. [Google Scholar] [CrossRef]
- Konoplin, A.; Konoplin, N.; Yurmanov, A. Development and Field Testing of a Smart Support System for ROV Operators. J. Mar. Sci. Eng. 2022, 10, 1439. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, Y.; Zhang, Q.; Jiang, J.; Chi, M.; Zhu, Y. Dynamic Damping-Based Terminal Sliding Mode Event-Triggered Fault-Tolerant Pre-Compensation Stochastic Control for Tracked ROV. J. Mar. Sci. Eng. 2022, 10, 1228. [Google Scholar] [CrossRef]
- Yin, F.; Wu, S.; Huang, H.; Cui, C.; Ji, Q. Effect of Machining Trajectory on Grinding Force of Complex-Shaped Stone by Robotic Manipulator. Machines 2022, 10, 787. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, L.; Wu, N.; Chen, M.; Liu, D.; Zhang, Z.; Liu, J. Adaptive Neural-PID Visual Servoing Tracking Control via Extreme Learning Machine. Machines 2022, 10, 782. [Google Scholar] [CrossRef]
- Erdemir, A.; Kalyoncu, M. Modeling Impedance Control with Limited Interaction Power for A 2R Planar Robot Arm. In Proceedings of the 4th Latin American International Congress on Natural and Applied Sciences, Rio de Janeiro, Brazil, 4–6 September 2023. [Google Scholar]
- Li, C.; Chen, X.; Ma, X.; Sun, H.; Wang, B. Skill Acquisition and Con-troller Design of Desktop Robot Manipulator Based on Audio–Visual Information Fusion. Machines 2022, 10, 772. [Google Scholar] [CrossRef]
- Moran, M.E. Evolution of robotic arms. J. Robot. Surg. 2007, 1, 103–111. [Google Scholar] [CrossRef]
- Efe, M.O.; Kaynak, O.; Yu, X. Sliding Mode Control of a Three Degrees of Freedom Anthropoid Robot by Driving the Controller Parameters to an Equivalent Regime. J. Dyn. Syst. Meas. Control 2000, 122, 632–640. [Google Scholar] [CrossRef]
- Wilamowski, B.M.; Iplikci, S.; Kaynak, O.; Efe, M.O. An algorithm for fast convergence in training neural networks. In Proceedings of the IJCNN’01 International Joint Conference on Neural Networks Proceedings (Cat. No. 01CH37222), Washington, DC, USA, 15–19 July 2002. [Google Scholar]
- Perruquetti, W.; Barbot, J.P. Sliding Mode Control in Engineering; Marcel Dekker, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Von Benzon, M.; Sørensen, F.F.; Uth, E.; Jouffroy, J.; Liniger, J.; Pedersen, S. An Open-Source Benchmark Simulator: Control of a BlueROV2 Underwater Robot. J. Mar. Sci. Eng. 2022, 10, 1898. [Google Scholar] [CrossRef]
- Miao, H.; Diao, P.; Yao, W.; Li, S.; Wang, W. Stability Study of Time Lag Disturbance in an Automatic Tractor Steering System Based on Sliding Mode Predictive Control. Agriculture 2022, 12, 2091. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, H.; Cheng, H. Multiple Constraints-Based Adaptive Three-Dimensional Back-Stepping Sliding Mode Guidance Law against a Maneuvering Target. Aerospace 2022, 9, 796. [Google Scholar] [CrossRef]
- Bao, H.; Zhu, H.; Li, X.; Liu, J. APSO-MPC and NTSMC Cascade Control of Fully-Actuated Autonomous Underwater Vehicle Trajectory Tracking Based on RBFNN Compensator. J. Mar. Sci. Eng. 2022, 10, 1867. [Google Scholar] [CrossRef]
- Xia, X.; Jia, Y.; Wang, X.; Zhang, J. Neural-Network-Based Terminal Sliding Mode Control of Space Robot Actuated by Control Moment Gyros. Aerospace 2022, 9, 730. [Google Scholar] [CrossRef]
- Sadati, N. A novel approach to coordination of large-scale systems; part I interaction prediction principle. In Proceedings of the 2005 IEEE International Conference on Industrial Technology, Hong Kong, China, 14–17 December 2005. [Google Scholar]
- Ak, A.G.; Cansever, G. Three link robot control with fuzzy sliding mode controller based on RBF neural network. In Proceedings of the 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, Munich, Germany, 4–6 October 2006. [Google Scholar]
- Yang, Y.; Wang, Y.; Zhang, W.; Li, Z.; Liang, R. Design of Adaptive Fuzzy Sliding-Mode Control for High-Performance Islanded Inverter in Micro-Grid. Energies 2022, 15, 9154. [Google Scholar] [CrossRef]
- Yan, X.G.; Spurgeon, S.K.; Edwards, C. Variable structure control of complex systems. In Communications and Control Engineering; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Elangovan, S.; Woo, P.Y. Adaptive fuzzy sliding control for a three-link passive robotic manipulator. Robotica 2005, 23, 635–644. [Google Scholar] [CrossRef]
- Aydin, M.; Yakut, O. Implementation of Sliding Surface Moving Anfis Based Sliding Mode Control to Rotary Inverted Pendulum. J. Inst. Sci. Technol. 2023, 13, 1165–1175. [Google Scholar] [CrossRef]
- Chand, A.; Khan, Q.; Alam, W.; Khan, L.; Iqbal, J. Certainty equivalence-based robust sliding mode control strategy and its application to uncertain PMSG-WECS. PLoS ONE 2023, 18, e0281116. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, Y.; Wang, X.; Chen, Y.; Lin, M. Enhanced fractional order sliding mode control for a class of fractional order uncertain systems with multiple mismatched disturbances. ISA Trans. 2023, 133, 147–159. [Google Scholar] [CrossRef]
- Phuoc, P.D. Industrial Robots; Construction Publishing House: Hanoi, Vietnam, 2007. [Google Scholar]
- Wai, R.-J. Fuzzy Sliding-Mode Control Using Adaptive Tuning Technique. IEEE Trans. Ind. Electron. 2007, 54, 586–594. [Google Scholar] [CrossRef]
- Yu, X.; Man, Z.; Wu, B. Design of fuzzy sliding-mode control systems. Fuzzy Sets Syst. 1998, 95, 295–306. [Google Scholar] [CrossRef]
- Alli, H.; Yakut, O. Fuzzy sliding-mode control of structures. Eng. Struct. 2005, 27, 277–284. [Google Scholar] [CrossRef]
- Yoo, B.; Ham, W. Adaptive fuzzy sliding mode control of nonlinear system. IEEE Trans. Fuzzy Syst. 1998, 6, 315–321. [Google Scholar]
- Wang, J.; Zhu, P.; He, B.; Deng, G.; Zhang, C.-L.; Huang, X. An Adaptive Neural Sliding Mode Control with ESO for Uncertain Nonlinear Systems. Int. J. Control Autom. Syst. 2021, 19, 687–697. [Google Scholar] [CrossRef]
- Park, B.S.; Yoo, S.J.; Park, J.B.; Choi, Y.H. Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots with Model Uncertainty. IEEE Trans. Control Syst. Technol. 2009, 17, 207–214. [Google Scholar] [CrossRef]
- Fei, J.; Ding, H. Adaptive sliding mode control of dynamic system using RBF neural network. Nonlinear Dyn. 2012, 70, 1563–1573. [Google Scholar] [CrossRef]
- Huynh, T.H. Intelligent Control System; National University Publishing House: Ho Chi Minh City, Vietnam, 2006. [Google Scholar]
- Pham, D.-A.; Han, S.-H. Design of Combined Neural Network and Fuzzy Logic Controller for Marine Rescue Drone Trajectory-Tracking. J. Mar. Sci. Eng. 2022, 10, 1716. [Google Scholar] [CrossRef]
- Fullér, R. Neural Fuzzy Systems; Turku Center for Computer Science: Turku, Finland, 1995. [Google Scholar]
- Lin, C.-T.; Lee, C.G. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems; Computing Reviews; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Juang, C.-F.; Lin, C.-T. A recurrent self-organizing neural fuzzy inference network. IEEE Trans. Neural Netw. 1999, 10, 828–845. [Google Scholar] [CrossRef]
- Lin, C.-T.; Lu, Y.-C. A neural fuzzy system with fuzzy supervised learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996, 26, 744–763. [Google Scholar]
- Galvan-Perez, D.; Yañez-Badillo, H.; Beltran-Carbajal, F.; Rivas-Cambero, I.; Favela-Contreras, A.; Tapia-Olvera, R. Neural Adaptive Robust Motion-Tracking Control for Robotic Manipulator Systems. Actuators 2022, 11, 255. [Google Scholar] [CrossRef]
- Fang, Q.; Mao, P.; Shen, L.; Wang, J. Robust Control Based on Adaptive Neural Network for the Process of Steady Formation of Continuous Contact Force in Unmanned Aerial Manipulator. Sensors 2023, 23, 989. [Google Scholar] [CrossRef]
- Malki, H.A.; Misir, D.; Feigenspan, D.; Chen, G. Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads. IEEE Trans. Control Syst. Technol. 1997, 5, 371–378. [Google Scholar] [CrossRef]
- De Jesús Rubio, J. Sliding mode control of robotic arms with deadzone. IET Control Theory Appl. 2017, 11, 1214–1221. [Google Scholar] [CrossRef]
- Al-Darraji, I.; Piromalis, D.; Kakei, A.A.; Khan, F.Q.; Stojmenovic, M.; Tsaramirsis, G.; Papageorgas, P.G. Adaptive robust controller design-based RBF neural network for aerial robot arm model. Electronics 2021, 10, 831. [Google Scholar] [CrossRef]
- Rakshit, A.; Pramanick, S.; Bagchi, A.; Bhattacharyya, S. Autonomous grasping of 3-D objects by a vision-actuated robot arm using Brain–Computer Interface. Biomed. Signal Process. Control 2023, 84, 104765. [Google Scholar] [CrossRef]
- Fernández, J.J.; Prats, M.; Sanz, P.J.; García, J.C.; Marin, R.; Robinson, M.; Ribas, D.; Ridao, P. Grasping for the seabed: Developing a new underwater robot arm for shallow-water intervention. IEEE Robot. Autom. Mag. 2013, 20, 121–130. [Google Scholar] [CrossRef]
- Phillips, B.T.; Becker, K.P.; Kurumaya, S.; Galloway, K.C.; Whittredge, G.; Vogt, D.M.; Teeple, C.B.; Rosen, M.H.; Pieribone, V.A.; Gruber, D.F.; et al. A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration. Sci. Rep. 2018, 8, 14779. [Google Scholar] [CrossRef]
- Gharaibeh, K.M. Nonlinear Distortion in Wireless Systems: Modeling and Simulation with MATLAB; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mohammadpour, J.; Scherer, C.W. (Eds.) Control of Linear Parameter Varying Systems with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Zhang, H.; Li, P.; Du, H.; Wang, Y.; Nguyen, A.T. Guest Editorial: Emerging Trends in LPV-Based Control of Intelligent Automotive Systems. IET Control Theory Appl. 2020, 14, 2715–2716. [Google Scholar]
- Ribeiro, M.I. Kalman and extended kalman filters: Concept, derivation and properties. Inst. Syst. Robot. 2004, 43, 3736–3741. [Google Scholar]
Joint | ||||
---|---|---|---|---|
1 | ||||
2 | 0 | 0 | ||
3 | 0 | 0 |
Joint 1 | Joint 2 | Joint 3 | |
---|---|---|---|
Overshot | |||
Risetime | |||
Ess | 0.68% | 1.24% | 1.32% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, D.-A.; Han, S.-H. Enhancing Underwater Robot Manipulators with a Hybrid Sliding Mode Controller and Neural-Fuzzy Algorithm. J. Mar. Sci. Eng. 2023, 11, 2312. https://doi.org/10.3390/jmse11122312
Pham D-A, Han S-H. Enhancing Underwater Robot Manipulators with a Hybrid Sliding Mode Controller and Neural-Fuzzy Algorithm. Journal of Marine Science and Engineering. 2023; 11(12):2312. https://doi.org/10.3390/jmse11122312
Chicago/Turabian StylePham, Duc-Anh, and Seung-Hun Han. 2023. "Enhancing Underwater Robot Manipulators with a Hybrid Sliding Mode Controller and Neural-Fuzzy Algorithm" Journal of Marine Science and Engineering 11, no. 12: 2312. https://doi.org/10.3390/jmse11122312
APA StylePham, D.-A., & Han, S.-H. (2023). Enhancing Underwater Robot Manipulators with a Hybrid Sliding Mode Controller and Neural-Fuzzy Algorithm. Journal of Marine Science and Engineering, 11(12), 2312. https://doi.org/10.3390/jmse11122312