The Escape Intensity and Its Influencing Factors in Antarctic Krill (Euphausia superba) Passing through Large Mesh at the Front End of a Commercial Trawl
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sea Trials
2.2. Sampling and Measurement
2.3. Data Analysis
2.3.1. Percentage Similarity Index
2.3.2. Escape Intensity of Krill and Its Influencing Factors
3. Results
3.1. Weight of Krill Collected in the Pocket Net
3.2. Body Length Composition and PSI of Krill between the Pocket Net and the Codend
3.3. Escape Intensity of Krill and Its Influencing Factors
4. Discussion
4.1. Effect of Liners on Krill Escapement through Mesh
4.2. Factors Affecting the Escape Intensity of Krill through Large Mesh Openings
4.2.1. Effect of Diurnal Patterns and Fishing Depth on Krill Escape
4.2.2. Effect of Body Length on Krill Escape
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, A.; Siegel, V.; Pakhomov, E.A.; Jessopp, M.J.; Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Pt. I 2009, 56, 727–740. [Google Scholar] [CrossRef]
- CCAMLR. Fisheries/Krill-Fisheries. Available online: https://www.ccamlr.org/en/fisheries/krill-fisheries (accessed on 1 October 2023).
- Krag, L.A.; Krafft, B.A.; Engås, A.; Herrmann, B. Collecting size-selectivity data for Antarctic krill (Euphausia superba) with a trawl independent towing rig. PLoS ONE 2018, 13, e0202027. [Google Scholar] [CrossRef] [PubMed]
- CCAMLR. Gear Diagram of Longteng. Available online: https://www.ccamlr.org/en/system/files/gear_diagrams/100221-net2-gear-diagram-longteng-2018.jpg (accessed on 1 October 2023).
- CCAMLR. Gear Diagram of Saga-Sea-and-Antarctic-Sea. Available online: https://www.ccamlr.org/en/system/files/gear_diagrams/90407-saga-sea-and-antarctic-sea-net-diagram.pdf (accessed on 1 October 2023).
- CCAMLR. GEAR Diagram of Antarctic Sea. Available online: https://www.ccamlr.org/en/system/files/gear_diagrams/104905-antarctic-sea-net-diagram.pdf (accessed on 1 October 2023).
- CCAMLR. Gear Diagram of Sejong. Available online: https://www.ccamlr.org/en/system/files/gear_diagrams/90565-net.docx (accessed on 1 October 2023).
- CCAMLR. Gear Diagram of Furonghai. Available online: https://www.ccamlr.org/en/system/files/gear_diagrams/100218-net1-gear-diagram-furonghai-2018.jpg (accessed on 1 October 2023).
- Marr, J.W.S. The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discov. Rep. 1962, 32, 33–464. [Google Scholar]
- Johnson, M.; Tarling, G. Influence of individual state on swimming capacity and behaviour of Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 2008, 366, 99–110. [Google Scholar] [CrossRef]
- Kanda, K.; Takagi, K.; Seki, Y. Movement of the larger swarms of Antarctic krill Euphausia superba off Enderby Land during 1976–1977 season. J. Tokyo Uni. Fish. 1982, 68, 24–42. [Google Scholar]
- Newland, P.L.; Chapman, C.J. The swimming and orientation behaviour of the Norway lobster, Nephrops norvegicus (L.), in relation to trawling. Fish. Res. 1989, 8, 63–80. [Google Scholar] [CrossRef]
- Polet, H. Codend and whole trawl selectivity of a shrimp beam trawl used in the North Sea. Fish. Res. 2000, 48, 167–183. [Google Scholar] [CrossRef]
- Říha, M.; Jůza, T.; Prchalová, M.; Mrkvička, T.; Čech, M.; Dratík, V.; Muška, M.; Kratochvíl, M.; Peterka, J.; Tušer, M.; et al. The size selectivity of the main body of a sampling pelagic pair trawl in freshwater reservoirs during the night. Fish. Res. 2012, 127–128, 56–60. [Google Scholar] [CrossRef]
- Krag, L.A.; Herrmann, B.; Iversen, S.A.; Engås, A.; Nordrum, S.; Krafft, B.A. Size Selection of Antarctic Krill (Euphausia superba) in Trawls. PLoS ONE 2014, 9, e102168. [Google Scholar] [CrossRef]
- Noack, T.; Madsen, N.; Mieske, B.; Frandsen, R.P.; Wieland, K.; Krag, L.A. Estimating escapement of fish and invertebrates in a Danish anchor seine. ICES J. Mar. Sci. 2017, 74, 2480–2488. [Google Scholar] [CrossRef]
- Czubek, H. Studies on performance capacity and selectivity of trawls used for Antarctic krill fisheries. Pol. Polar Res. 1981, 2, 131–142. Available online: https://journals.pan.pl/Content/111564/PDF/1981_1-2_131-142.pdf (accessed on 14 December 2023).
- Herrmann, B.; Krag, L.A.; Krafft, B.A. Size selection of antarctic krill (euphausia superba) in a commercial codend and trawl body. Fish. Res. 2018, 207, 49–54. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, H.; Herrmann, B.; Xu, L. Catch Pattern for Antarctic krill (Euphausia superba) of Different Commercial Trawls in Similar Times and Overlapping Fishing Grounds. Front. Mar. Sci. 2021, 8, 670663. [Google Scholar] [CrossRef]
- Matsushita, Y.; Inoue, Y.; Shevchenko, A.I.; Norinov, Y.G. Selectivity in the codend and in the main body of the trawl. ICES J. Mar. Sci. 1993, 196, 170–177. [Google Scholar]
- Williams, K.; Punt, A.E.; Wilson, C.D.; Horne, J.K. Length-selective retention of walleye pollock, Theragra chalcogramma, by midwater trawls. ICES J. Mar. Sci. 2011, 68, 119–129. [Google Scholar] [CrossRef]
- Williams, K.; Wilson, C.D.; Horne, J.K. Walleye pollock (Theragra chalcogramma) behavior in midwater trawls. Fish. Res. 2013, 143, 109–118. [Google Scholar] [CrossRef]
- CCAMLR. Scientific Observer’s Manual—Krill Fisheries—Version 2023. CCAMLR: Hobart, Australia; p. 8. Available online: https://www.ccamlr.org/en/system/files/e-SISO%20Manual%20Krill%20Fisheries%202023.pdf (accessed on 1 October 2023).
- Newman, R.M. Comparison of encounter model predictions with observed size-selectivity by stream trout. J. N. Am. Benthol. Soc. 1987, 6, 56–64. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized additive models. Stat. Sci. 1986, 1, 297–310. [Google Scholar] [CrossRef]
- Jensen, O.P.; Seppelt, R.; Miller, T.J.; Bauer, L.J. Winter distribution of blue crab Callinectes sapidus in Chesapeake Bay: Application and cross-validation of a two-stage generalized additive model. Mar. Ecol. Prog. Ser. 2005, 299, 239–255. [Google Scholar] [CrossRef]
- Tang, H.; Xu, L.; Zhou, C.; Wang, X.; Zhu, G.; Hu, F. The effect of environmental variables, gear design, and operational parameters on sinking performance of tuna purse seine setting on free-swimming schools. Fish. Res. 2017, 196, 151–159. [Google Scholar] [CrossRef]
- O’Connell, M.; Hurley, C.B.; Domijan, K. Conditional visualization for statistical models: An introduction to the condvis package in R. J. Stat. Softw. 2016, 81, 1–20. [Google Scholar] [CrossRef]
- Krafft, B.A.; Krag, L.A.; Engås, A.; Nordrum, S.; Bruheim, I.; Herrmann, B. Quantifying the Escape Mortality of Trawl Caught Antarctic Krill (Euphausia superba). PLoS ONE 2016, 11, e0162311. [Google Scholar] [CrossRef]
- Kasatkina, S.M. Selectivity of commercial and research trawls in relation to krill. CCAMLR Sci. 1997, 4, 161–169. Available online: https://www.ccamlr.org/en/system/files/science_journal_papers/11kasatkina.pdf (accessed on 1 October 2023).
- Voronina, N.M.; Pakhomov, E.A. How accurate are trawl krill biomass estimates? Oceanology 1998, 38, 211–212. [Google Scholar]
- Ricketts, C.; Watkins, J.L.; Priddle, J.; Morris, D.J.; Buchholz, F. An assessment of the biological and acoustic characteristics of swarms of Antarctic krill. Deep Sea Res. Pt. I. 1992, 39, 359–371. [Google Scholar] [CrossRef]
- Everson, I.; Bone, D.G. Effectiveness of the RMT8 system for sampling krill (Euphausia superba) swarms. Polar Bio. 1986, 6, 83–90. [Google Scholar] [CrossRef]
- Kawaguchi, S.; King, R.; Meijers, R.; Osborn, J.E.; Swadling, K.M.; Ritz, D.A.; Nicol, S. An experimental aquarium for observing the schooling behaviour of Antarctic krill (Euphausia superba). Deep Sea Res. Pt. II 2010, 57, 683–692. [Google Scholar] [CrossRef]
- Hamner, W.M. Aspects of schooling in Euphausia superba. J. Crustac. Biol. 1984, 4, 67–74. [Google Scholar] [CrossRef]
Statistics | Bootstrap a | |||||
---|---|---|---|---|---|---|
Deviation | Std. Error | 95% Confidence Interval | ||||
Lower Limit | Upper Limit | |||||
Number of Hauls | 25 | 25 | 25 | |||
Weight (g) | Minimum | 45 | ||||
Maximum | 385 | |||||
Mean | 125.92 | 0.44 | 16.90 | 96.41 | 162.00 | |
Std. Dev | 82.94 | −3.84 | 17.50 | 46.12 | 111.22 |
Group | Number of Hauls | Median of Body Length Class | ||||||
---|---|---|---|---|---|---|---|---|
27.5 mm | 32.5 mm | 37.5 mm | 42.5 mm | 47.5 mm | 52.5 mm | |||
Pocket net | Day | 18 | 63.9 | 23.2 | 8.2 | 2.9 | 1.3 | 0.5 |
(59.1–68.8) a | (20.4–25.6) a | (5.9–10.8) a | (2.1–3.9) a | (0.6–2.3) a | (0.1–1.3) f | |||
Night | 7 | 52.1 | 26.6 | 13.3 | 5.6 | 2.1 | 0.4 | |
(39.9–63.2) b | (22.0–31.0) c | (9.2–18.0) c | (2.1–10.3) e | (0.8–3.6) d | (0.1–1.0) g | |||
Sig. | 0.141 | 0.178 | 0.034 * | 0.745 | 0.326 | 0.745 | ||
Codend | Day | 18 | 26.4 | 26.9 | 18.6 | 15.4 | 9.6 | 3.4 |
(20.9–32.6) a | (22.9–31.1) a | (16.4–20.9) a | (12.6–18.3) a | (7.2–12.3) a | (1.5–5.8) a | |||
Night | 7 | 42.2 | 24.5 | 19.0 | 8.7 | 4.7 | 0.9 | |
(25.6–59.0) b | (19.2–29.0) b | (11.8–26.0) b | (4.1–14.5) b | (2.0–7.7) b | (0.4–1.4) c | |||
Sig. | 0.11 | 0.836 | 0.657 | 0.021 * | 0.055 | 0.11 |
Group | Number of Hauls | Mean Value (mm) | Std. Dev (mm) | Sig. |
---|---|---|---|---|
PSI | 25 | 67.31 (61.86–72.87) a | 15.15 (11.49–18.02) a | |
PSI-Day | 18 (1) | 60.96 (55.68–66.71) a | 11.98 (7.19–15.76) a | 0.000 * |
PSI-Night | 7 (6) | 83.62 (76.80–89.46) b | 9.00 (1.21–12.40) b |
Statistics | Bootstrap a | |||||
---|---|---|---|---|---|---|
Deviation | Std. Error | 95% Confidence Interval | ||||
Lower Limit | Upper Limit | |||||
Total | Number of Hauls | 25 | 25 | 25 | ||
Minimum | 20.83 | |||||
Maximum | 213.13 | |||||
Mean | 95.60 | −0.48 | 11.41 | 74.53 | 117.70 | |
Std. Dev | 59.81 | −1.89 | 6.23 | 45.07 | 69.60 | |
Day | Number of Hauls | 18 | 18 | 18 | ||
Minimum | 20.83 | |||||
Maximum | 180.56 | |||||
Mean | 76.53 | 0.39 | 12.05 | 55.22 | 101.09 | |
Night | Std. Dev | 52.76 | −1.90 | 7.41 | 34.42 | 63.66 |
Number of Hauls | 7 | 7 | 7 | |||
Minimum | 87.86 | |||||
Maximum | 213.13 | |||||
Mean | 144.66 | −0.44 | 17.86 | 110.44 | 180.03 | |
Std. Dev | 50.22 | −4.95 | 9.30 | 23.89 | 60.41 |
Variable | Estimate | Std. Error | t Value | Pr(>|t|) | AIC |
(Intercept) | 73.77 | 12.63 | 5.84 | 1.13 × 10−5 *** | 267.35 |
Diurnal (day-night) | 77.98 | 32.09 | 2.43 | 0.02 * | 271.93 |
EDF | Ref. df | F | p-Value | ||
Weighted mean body length of krill in codend (mm) | 1.72 | 1.92 | 3.40 | 0.09 | 270.43 |
Fishing depth (m) | 1.74 | 2.14 | 1.52 | 0.26 | 268.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, L.; Wang, Y.; Tang, H.; Xu, L. The Escape Intensity and Its Influencing Factors in Antarctic Krill (Euphausia superba) Passing through Large Mesh at the Front End of a Commercial Trawl. J. Mar. Sci. Eng. 2023, 11, 2370. https://doi.org/10.3390/jmse11122370
Wang Z, Wang L, Wang Y, Tang H, Xu L. The Escape Intensity and Its Influencing Factors in Antarctic Krill (Euphausia superba) Passing through Large Mesh at the Front End of a Commercial Trawl. Journal of Marine Science and Engineering. 2023; 11(12):2370. https://doi.org/10.3390/jmse11122370
Chicago/Turabian StyleWang, Zhongqiu, Lumin Wang, Yongjin Wang, Hao Tang, and Liuxiong Xu. 2023. "The Escape Intensity and Its Influencing Factors in Antarctic Krill (Euphausia superba) Passing through Large Mesh at the Front End of a Commercial Trawl" Journal of Marine Science and Engineering 11, no. 12: 2370. https://doi.org/10.3390/jmse11122370