Cross-Slope Transport by a Mesoscale Anticyclone in the Northern South China Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Model Setup
2.2. Wind Data for Calculating the Ekman Pumping Velocity
2.3. Eddy Detection and Tracking Algorithm
2.3.1. Eddy-Detection Algorithm Based on Vector Geometry
2.3.2. Three-Dimensional Eddy Detection
2.4. Cross-Slope Volume Transport Induced by the Warm Eddy
2.5. Ekman Pumping/Suction Velocity
2.6. Vorticity and Deformation Index
3. Results
3.1. Cross-slope Process of the Warm Eddy
3.2. Quantitative Analysis of Cross-Slope Volume Transport
3.3. Lagrangian Particle Experiments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Du, Y.; Liang, F.; Sun, Y.; Yi, J. A Census of the 1993–2016 Complex Mesoscale Eddy Processes in the South China Sea. Water 2019, 11, 1208. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.; Sun, L.; Li, S.; Yang, Y.; Liu, S. The most typical shape of oceanic mesoscale eddies from global satellite sea level observations. Front. Earth Sci. 2014, 9, 202–208. [Google Scholar] [CrossRef]
- Chen, G.; Wang, D.; Dong, C.; Zu, T.; Xue, H.; Shu, Y.; Chu, X.; Qi, Y.; Chen, H. Observed deep energetic eddies by seamount wake. Sci. Rep. 2015, 5, 17416. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Kawamura, H.; Hong, H.; Qi, Y. A Review on the Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion. J. Oceanogr. 2000, 56, 607–624. [Google Scholar] [CrossRef]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, L.; Li, J.; Chen, J.; He, Y.; Yao, J.; Wang, D.; Zhou, W. Observed Cross-Shelf Flow Induced by Mesoscale Eddies in the Northern South China Sea. J. Phys. Oceanogr. 2018, 48, 1609–1628. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global heat and salt transports by eddy movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef]
- He, Q.; Zhan, H.; Cai, S.; Li, Z. Eddy effects on surface chlorophyll in the northern South China Sea: Mechanism investigation and temporal variability analysis. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2016, 112, 25–36. [Google Scholar] [CrossRef]
- Pnyushkov, A.; Polyakov, I.V.; Padman, L.; Nguyen, A.T. Structure and dynamics of mesoscale eddies over the Laptev Sea continental slope in the Arctic Ocean. Ocean Sci. 2018, 14, 1329–1347. [Google Scholar] [CrossRef]
- Xia, Q.; Shen, H. Automatic detection of oceanic mesoscale eddies in the South China Sea. Chin. J. Oceanol. Limnol. 2015, 33, 1334–1348. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Liu, Z.; Wu, J. Temporal and Spatial Characteristics of Mesoscale Eddies in the Northern South China Sea: Statistics Analysis Based on Altimeter Data. Adv. Earth Sci. 2019, 34, 1069–1080. [Google Scholar]
- Gaube, P.; McGillicuddy, D.J.; Chelton, D.B.; Behrenfeld, M.J.; Strutton, P.G. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans 2014, 119, 8195–8220. [Google Scholar] [CrossRef]
- He, Q.; Zhan, H.; Cai, S.; He, Y.; Huang, G.; Zhan, W. A New Assessment of Mesoscale Eddies in the South China Sea: Surface Features, Three-Dimensional Structures, and Thermohaline Transports. J. Geophys. Res. Oceans 2018, 123, 4906–4929. [Google Scholar] [CrossRef]
- Su, J. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont. Shelf Res. 2004, 24, 1745–1760. [Google Scholar]
- Zhang, Y.; Liu, Z.; Zhao, Y.; Wang, W.; Li, J.; Xu, J. Mesoscale eddies transport deep-sea sediments. Sci. Rep. 2014, 4, 5937. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Xie, X.; Ren, J. Sediment dynamics driven by contour currents and mesoscale eddies along continental slope: A case study of the northern South China Sea. Mar. Geol. 2018, 409, 48–66. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Zhao, Y.; Li, J.; Liang, X. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 122, 6–14. [Google Scholar] [CrossRef]
- Xue, H.; Chai, F.; Pettigrew, N.; Xu, D.; Shi, M.; Xu, J. Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res. Atmos. 2004, 109, C02017. [Google Scholar] [CrossRef]
- Yuan, D.; Han, W.; Hu, D. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters. Geophys. Res. Lett. 2007, 34, L13610. [Google Scholar] [CrossRef]
- Li, J.; Zhang, R.; Jin, B. Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data. Ocean Sci. 2011, 7, 661–669. [Google Scholar] [CrossRef]
- Chen, G.; Gan, J.; Xie, Q.; Chu, X.; Wang, D.; Hou, Y. Eddy heat and salt transports in the South China Sea and their seasonal modulations. J. Geophys. Res. Atmos. 2012, 117, C05021. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Q. Eddy Shedding from the Kuroshio Bend at Luzon Strait. J. Oceanogr. 2004, 60, 1063–1069. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Q.; Liu, W. Primary Study of the Mechanism of Eddy Shedding from the Kuroshio Bend in Luzon Strait. J. Oceanogr. 2005, 61, 1017–1027. [Google Scholar] [CrossRef]
- Nan, F.; He, Z.; Zhou, H.; Wang, D. Three long-lived anticyclonic eddies in the northern South China Sea. J. Geophys. Res. Atmos. 2011, 116, C05002. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.; Xiu, P.; Chai, F.; Shi, M.; Guo, P. Oceanic eddy formation and propagation southwest of Taiwan. J. Geophys. Res. Atmos. 2011, 116, C12045. [Google Scholar] [CrossRef]
- Qiu, C.; Liang, H.; Huang, Y.; Mao, H.; Yu, J.; Wang, D.; Su, D. Development of double cyclonic mesoscale eddies at around Xisha islands observed by a‘Sea-Whale 2000’ autonomous underwater vehicle. Appl. Ocean Res. 2020, 101, 102270. [Google Scholar] [CrossRef]
- Ye, H.; Kalhoro, M.A.; Morozov, E.; Tang, D.; Wang, S.; Thies, P.R. Increased chlorophyll-a concentration in the South China Sea caused by occasional sea surface temperature fronts at peripheries of eddies. Int. J. Remote Sens. 2017, 39, 4360–4375. [Google Scholar] [CrossRef]
- James, I.D. A three-dimensional numerical shelf-sea front model with variable eddy viscosity and diffusivity. Cont. Shelf Res. 1984, 3, 69–98. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhou, M.; Zhong, Y.; Zhang, Z.; Liu, H.; Zhou, L. Statistical characteristics of mesoscale eddies on the continental slope in the northern South China Sea. Acta Oceanol. Sin. 2020, 39, 36–44. [Google Scholar] [CrossRef]
- Su, D.; Lin, P.; Mao, H.; Wu, J.; Liu, H.; Cui, Y.; Qiu, C. Features of Slope Intrusion Mesoscale Eddies in the Northern South China Sea. J. Geophys. Res. Oceans 2020, 125, e2019JC015349. [Google Scholar] [CrossRef]
- Qiu, C.; Yi, Z.; Su, D.; Wu, Z.; Liu, H.; Lin, P.; He, Y.; Wang, D. Cross-Slope Heat and Salt Transport Induced by Slope Intrusion Eddy’s Horizontal Asymmetry in the Northern South China Sea. J. Geophys. Res. Ocean. 2022, 127, e2022JC018406. [Google Scholar] [CrossRef]
- Zhang, T.; Li, J.; Xie, L.; Zheng, Q. Statistical Analysis of Mesoscale Eddies Entering the Continental Shelf of the Northern South China Sea. J. Mar. Sci. Eng. 2022, 10, 206. [Google Scholar] [CrossRef]
- Shu, Y.; Wang, J.; Xue, H.; Huang, R.X.; Chen, J.; Wang, D.; Wang, Q.; Xie, Q.; Wang, W. Deep-Current Intraseasonal Variability Interpreted as Topographic Rossby Waves and Deep Eddies in the Xisha Islands of the South China Sea. J. Phys. Oceanogr. 2022, 52, 1415–1430. [Google Scholar] [CrossRef]
- Dong, C.; Lin, X.; Liu, Y.; Nencioli, F.; Chao, Y.; Guan, Y.; Chen, D.; Dickey, T.; McWilliams, J.C. Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product. J. Geophys. Res. Oceans 2012, 117, C00H14. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res. Ocean. 2003, 108, 3090. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. Atmos. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Lin, X.; Dong, C.; Chen, D.; Liu, Y.; Yang, J.; Zou, B.; Guan, Y. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2015, 99, 46–64. [Google Scholar] [CrossRef]
- Tomita, H.; Hihara, T.; Kako, S.; Kubota, M. An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations. J. Oceanogr. 2019, 75, 171–194. [Google Scholar] [CrossRef]
- Wada, A.; Tomita, H.; Kako, S. Comparison of the third-generation Japanese ocean flux data set J-OFURO3 with numerical simulations of Typhoon Dujuan (2015) traveling south of Okinawa. J. Oceanogr. 2020, 76, 419–437. [Google Scholar] [CrossRef]
- Yang, G.; Lin, X.; Han, G.; Liu, Y.; Chen, G.; Wang, J. Three-dimensional characteristics of mesoscale eddies simulated by a regional model in the northwestern Pacific Ocean during 2000–2008. Acta Oceanol. Sin. 2022, 41, 74–93. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Y.; Chen, G.; Tan, W.; Lin, X.; Guan, Y.; Dong, C. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea. Acta Oceanol. Sin. 2021, 40, 17–29. [Google Scholar] [CrossRef]
- Thyng, K.M.; Kobashi, D.; Ruiz-Xomchuk, V.; Qu, L.; Chen, X.; Hetland, R.D. Performance of offline passive tracer advection in ROMS (v3. 6, revision 904). Geosci. Model Dev. Discuss. 2020, 2020, 1–19. [Google Scholar]
- Nencioli, F.; Dong, C.; Dickey, T.; Washburn, L.; McWilliams, J.C. A Vector Geometry-Based Eddy Detection Algorithm and Its Application to a High-Resolution Numerical Model Product and High-Frequency Radar Surface Velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564. [Google Scholar] [CrossRef]
- Guerrero, L.; Sheinbaum, J.; Mariño-Tapia, I.; González-Rejón, J.J.; Pérez-Brunius, P. Influence of mesoscale eddies on cross-shelf exchange in the western Gulf of Mexico. Cont. Shelf Res. 2020, 209, 104243. [Google Scholar] [CrossRef]
- Qiu, C.; Mao, H.; Liu, H.; Xie, Q.; Yu, J.; Su, D.; Ouyang, J.; Lian, S. Deformation of a Warm Eddy in the Northern South China Sea. J. Geophys. Res. Oceans 2019, 124, 5551–5564. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.; Yu, F. Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr. 2015, 137, 314–333. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Strutton, P.G.; Behrenfeld, M.J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans 2013, 118, 6349–6370. [Google Scholar] [CrossRef]
- Martin, A.P.; Richards, K.J. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 757–773. [Google Scholar] [CrossRef]
- McGillicuddy, D.J., Jr.; Anderson, L.A.; Bates, N.R.; Bibby, T.; Buesseler, K.O.; Carlson, C.A.; Davis, C.S.; Ewart, C.; Falkowski, P.G.; Goldthwait, S.A.; et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 2007, 316, 1021–1026. [Google Scholar] [CrossRef]
- Ribbe, J.; Toaspern, L.; Wolff, J.-O.; Ismail, M.F.A. Frontal eddies along a western boundary current. Cont. Shelf Res. 2018, 165, 51–59. [Google Scholar] [CrossRef]
Section | Transport before Cross-Slope | Transport during Cross-Slope | Transport after Cross-Slope | Growth Rate during Cross-Slope | Reduction Rate after Cross-Slope |
---|---|---|---|---|---|
ab | 0.04 | 0.12 | 0.03 | 193.2% | −71.1% |
bc | 0.09 | 0.11 | 0.05 | 24.3% | −53.2% |
cd | 0.05 | 0.02 | 0.08 | −56.6% | 277.9% |
de | −0.03 | −0.08 | −0.05 | 203.3% | −44.3% |
all | 0.15 | 0.16 | 0.11 | 11.4% | −30.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Wang, G.; Han, G.; Liu, Y.; Zhang, H.; Liao, X.; Ji, Q. Cross-Slope Transport by a Mesoscale Anticyclone in the Northern South China Sea. J. Mar. Sci. Eng. 2023, 11, 305. https://doi.org/10.3390/jmse11020305
Lin X, Wang G, Han G, Liu Y, Zhang H, Liao X, Ji Q. Cross-Slope Transport by a Mesoscale Anticyclone in the Northern South China Sea. Journal of Marine Science and Engineering. 2023; 11(2):305. https://doi.org/10.3390/jmse11020305
Chicago/Turabian StyleLin, Xiayan, Guixi Wang, Guoqing Han, Yu Liu, Han Zhang, Xiaomei Liao, and Qiyan Ji. 2023. "Cross-Slope Transport by a Mesoscale Anticyclone in the Northern South China Sea" Journal of Marine Science and Engineering 11, no. 2: 305. https://doi.org/10.3390/jmse11020305
APA StyleLin, X., Wang, G., Han, G., Liu, Y., Zhang, H., Liao, X., & Ji, Q. (2023). Cross-Slope Transport by a Mesoscale Anticyclone in the Northern South China Sea. Journal of Marine Science and Engineering, 11(2), 305. https://doi.org/10.3390/jmse11020305