Socio-Economic Assessment of Ecosystem-Based and Other Adaptation Strategies in Coastal Areas: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Identification of Studies
2.2. Screening Process
2.3. Literature-Review Analysis
3. Results
3.1. Basic Information
3.2. Socio-Economic Methods Used to Assess Climate-Change Adaptation
- (a)
- Types of assessment methods
- (b)
- Aim and timing of the assessment methods
- (c)
- Stakeholder involvement
3.3. Climate-Change Impact and Adaptation Context
- (a)
- Climate-change hazards and sectoral impacts
- (b)
- Period of analysis and climate change and socio-economic scenarios
- (c)
- Adaptation strategies and measures
3.4. Performance
- (a)
- Main results of the assessments including EbA adaptation measures
Study | Method | Hazard | Adaptation Measures and Strategies | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hard | Soft | EbA | ||||||||||||||||||||||||||
Cliff Drainage | Concrete Dykes | Dams | Engineering Dunes | Floodwalls/Storm-Surge Barriers | Local Levees | Pipes/Pipe Enlargement | Beach-Access Management | Enhanced Building Codes | Home-Elevation Policy | Infiltration Trenches | Permeable Pavements | Rainwater Barrels | Sandbags | Sand Nourishment/Sedimentation | Bioretention Cells | Detention Basins | Dune Restoration | Earthen Dykes | Green Roofs | Mangrove-Forest Rehabilitation | OUDS | Oyster-Reef Restoration | Plant Cover of Cliffs | Retention Basin | Wetland Restoration | |||
Ref. [5] | CBA | Flooding | + | |||||||||||||||||||||||||
Ref. [63] 1 | CBA | Flooding, overflow, runoffs | + | + | + | + | + | + | ||||||||||||||||||||
Ref. [7] | CBA | Flooding | + | + | ||||||||||||||||||||||||
Ref. [62] | CBA | Flooding | + | |||||||||||||||||||||||||
Ref. [61] | CBA/CEA | Flooding | + | |||||||||||||||||||||||||
Ref. [35] | MCA | Flooding | + | + | ||||||||||||||||||||||||
Ref. [36] | MCA | Flooding, coastal erosion | ||||||||||||||||||||||||||
Ref. [9] | MCA/CBA | Flooding | + | + | ||||||||||||||||||||||||
Ref. [64] | Other (EBR) | Flooding | + | |||||||||||||||||||||||||
Ref. [31] | Other (SDG, SIS) | Flooding | + | + | + | + |
- (b)
- Recommendations provided
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding–A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Doust, K.; Wejs, A.; Zhang, T.T.; Swan, A.; Sultana, N.; Braneon, C.; Luetz, J.; Casset, L.; Fatorić, S. Adaptation to climate change in coastal towns of between 10,000 and 50,000 inhabitants. Ocean. Coast. Manag. 2021, 212, 105790. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Du, S.; Scussolini, P.; Ward, P.J.; Zhang, M.; Wen, J.; Wang, L.; Koks, E.; Diaz-Loaiza, A.; Gao, J.; Ke, Q.; et al. Hard or soft flood adaptation? Advantages of a hybrid strategy for Shanghai. Glob. Environ. Change 2020, 61, 102037. [Google Scholar] [CrossRef]
- Lane, D.; Beigzadeh, S.; Moll, R. Adaptation Decision Support: An Application of System Dynamics Modeling in Coastal Communities. Int. J. Disaster Risk Sci. 2017, 8, 374–389. [Google Scholar] [CrossRef]
- Oanh, P.T.; Tamura, M.; Kumano, N.; van Nguyen, Q. Cost-benefit analysis of mixing gray and green infrastructures to adapt to sea level rise in the Vietnamese mekong river delta. Sustainability 2020, 12, 10356. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Sanchez, A.; Vojinovic, Z.; Kapelan, Z. Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resour. Manag. 2018, 32, 2505–2522. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef]
- Bloetscher, F.; Polsky, C.; Bolter, K.; Mitsova, D.; Garces, K.P.; King, R.; Carballo, I.C.; Hamilton, K. Assessing potential impacts of sea level rise on public health and vulnerable populations in Southeast Florida and providing a framework to improve outcomes. Sustainability 2016, 8, 315. [Google Scholar] [CrossRef]
- Zölch, T.; Wamsler, C.; Pauleit, S. Integrating the ecosystem-based approach into municipal climate adaptation strategies: The case of Germany. J. Clean. Prod. 2018, 170, 966–977. [Google Scholar] [CrossRef]
- Jones, H.P.; Hole, D.G.; Zavaleta, E.S. Harnessing nature to help people adapt to climate change. Nature Climate Change 2012, 2, 504–509. [Google Scholar] [CrossRef]
- Aerts, J.C.; Botzen, W.J.W.; Emanuel, K.; Lin, N.; de Moel, H.; Michel-Kerjan, E.O. Evaluating flood resilience strategies for coastal megacities. Science 2014, 344, 473–475. [Google Scholar] [CrossRef]
- Scussolini, P.; Tran, T.T.; van Koks, E.; Diaz-Loaiza, A.; Ho, P.L.; Lasage, R. Adaptation to Sea Level Rise: A Multidisciplinary Analysis for Ho Chi Minh City, Vietnam. Water Resour. Res. 2017, 53, 10841–10857. [Google Scholar] [CrossRef]
- De Ruig, L.T.; Barnard, P.L.; Botzen, W.J.W.; Grifman, P.; Hart, J.F.; de Moel, H.; Sadrpour, N.; Aerts, J.C.J.H. An economic evaluation of adaptation pathways in coastal mega cities: An illustration for Los Angeles. Sci. Total Environ. 2019, 678, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Secretariat of the Convention on Biological Diversity. Review of the Literature on the Links Between Biodiversity and Climate Change: Impacts, adaptation, and mitigation; Secretariat of the Convention on Biological Diversity: Quebec, QC, Canada, 2009. [Google Scholar]
- Munang, R.; Thiaw, I.; Alverson, K.; Mumba, M.; Liu, J.; Rivington, M. Climate change and Ecosystem-based Adaptation: A new pragmatic approach to buffering climate change impacts. Curr. Opin. Environ. Sustain. 2013, 5, 67–71. [Google Scholar] [CrossRef]
- Brink, E.; Aalders, T.; Ádám, D.; Feller, R.; Henselek, Y.; Hoffmann, A.; Ibe, K.; Matthey-Doret, A.; Meyer, M.; Negrut, N.L. Cascades of green: A review of ecosystem-based adaptation in urban areas. Glob. Environ. Change 2016, 36, 111–123. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. The Links Between Biodiversity, Ecosystem Services and Human Well-Being Managing Ecosystems for People. In Ecosystem Ecology, Ecological Reviews; Cambridge University Press: Cambridge, UK, 2010; Available online: ttp://www.un.org/millenniumgoals/ (accessed on 11 January 2022).
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Pauleit, S.; Zölch, T.; Hansen, R.; Randrup, T.B.; Konijnendijk van den Bosch, C. Nature-Based Solutions and Climate Change–Four Shades of Green BT–Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer International Publishing: New York, NY, USA, 2017; pp. 29–49. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; Volume 97. [Google Scholar]
- Vignola, R.; Locatelli, B.; Martinez, C.; Imbach, P. Ecosystem-based adaptation to climate change: What role for policy-makers, society and scientists? Mitig. Adapt. Strateg. Glob. Change 2009, 14, 691–696. [Google Scholar] [CrossRef]
- Doswald, N.; Munroe, R.; Roe, D.; Giuliani, A.; Castelli, I.; Stephens, J.; Möller, I.; Spencer, T.; Vira, B.; Reid, H. Effectiveness of ecosystem-based approaches for adaptation: Review of the evidence-base. Clim. Dev. 2014, 6, 185–201. [Google Scholar] [CrossRef]
- Kithiia, J.; Lyth, A. Urban wildscapes and green spaces in mombasa and their potential contribution to climate change adaptation and mitigation. Environ. Urban. 2011, 23, 251–265. [Google Scholar] [CrossRef]
- Schoonees, T.; Gijón Mancheño, A.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard Structures for Coastal Protection, Towards Greener Designs. Estuaries Coasts 2019, 42, 1709–1729. [Google Scholar] [CrossRef]
- Wamsler, C.; Niven, L.; Beery, T.H.; Bramryd, T.; Ekelund, N.; Jönsson, K.I.; Osmani, A.; Palo, T.; Stålhammar, S. Operationalizing ecosystem-based adaptation: Harnessing ecosystem services to buffer communities against climate change. Ecol. Soc. 2016, 21, 31. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ 2021, 372. [Google Scholar] [CrossRef]
- Bueno, S.; Bañuls, V.A.; Gallego, M.D. Is urban resilience a phenomenon on the rise? A systematic literature review for the years 2019 and 2020 using textometry. Int. J. Disaster Risk Reduct. 2021, 66, 102588. [Google Scholar] [CrossRef]
- Sierra-Correa, P.C.; Cantera Kintz, J.R. Ecosystem-based adaptation for improving coastal planning for sea-level rise: A systematic review for mangrove coasts. Mar. Policy 2015, 51, 385–393. [Google Scholar] [CrossRef]
- Schipper, C.A.; Dekker, G.G.J.; de Visser, B.; Bolman, B.; Lodder, Q. Characterization of sdgs towards coastal management: Sustainability performance and cross-linking consequences. Sustainability 2021, 13, 1560. [Google Scholar] [CrossRef]
- Metcalf, S.J.; van Putten, E.I.; Frusher, S.D.; Tull, M.; Marshall, N. Adaptation options for marine industries and coastal communities using community structure and dynamics. Sustain. Sci. 2014, 9, 247–261. [Google Scholar] [CrossRef]
- Sturiale, L.; Scuderi, A. The role of green infrastructures in urban planning for climate change adaptation. Climate 2019, 7, 119. [Google Scholar] [CrossRef]
- Tonmoy, F.; Brown, M.; Polydoropoulos, P.; El-Zein, A. A comparative analysis of engineering options for adaptation to sea-level rise: A case study for a vulnerable beach in Shoalhaven NSW. MODSIM 2015, 2015, 1503–1509. [Google Scholar]
- Alves, A.; Vojinovic, Z.; Kapelan, Z.; Sanchez, A.; Gersonius, B. Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci. Total Environ. 2020, 703, 134980. [Google Scholar] [CrossRef]
- Baills, A.; Garcin, M.; Bulteau, T. Assessment of selected climate change adaptation measures for coastal areas. Ocean. Coast. Manag. 2020, 185, 105059. [Google Scholar] [CrossRef]
- McNamara, D.E.; Murray, B.A.; Smith, M.D. Coastal sustainability depends on how economic and coastline responses to climate change affect each other. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Kuhfuss, L.; Rey-Valette, H.; Sourisseau, E.; Heurtefeux, H.; Rufray, X. Evaluating the impacts of sea level rise on coastal wetlands in Languedoc-Roussillon, France. Environ. Sci. Policy 2016, 59, 26–34. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ritphring, S.; Nidhinarangkoon, P.; Udo, K.; Shirakawa, H. The comparative study of adaptation measure to sea level rise in thailand. J. Mar. Sci. Eng. 2021, 9, 588. [Google Scholar] [CrossRef]
- Rohat, G.; Wilhelmi, O.; Flacke, J.; Monaghan, A.; Gao, J.; van Maarseveen, M.; Dao, H. Assessing urban heat-related adaptation strategies under multiple futures for a major U.S. city. Clim. Change 2021, 164, 1–20. [Google Scholar] [CrossRef]
- Haer, T.; Botzen, W.J.W.; Zavala-Hidalgo, J.; Cusell, C.; Ward, P.J. Economic evaluation of climate risk adaptation strategies: Cost-benefit analysis of flood protection in Tabasco, Mexico. Atmósfera 2017, 30, 101–120. [Google Scholar] [CrossRef]
- Radhakrishnan, M.; Löwe, R.; Ashley, R.M.; Gersonius, B.; Arnbjerg-Nielsen, K.; Pathirana, A.; Zevenbergen, C. Flexible adaptation planning process for urban adaptation in Melbourne, Australia. Proc. Inst. Civ. Eng. Eng. Sustain. 2018, 172, 393–403. [Google Scholar] [CrossRef]
- Woodruff, S.; BenDor, T.K.; Strong, A.L. Fighting the inevitable: Infrastructure investment and coastal community adaptation to sea level rise. Syst. Dyn. Rev. 2018, 34, 48–77. [Google Scholar] [CrossRef]
- Ćulibrk, A.; Tzoraki, O.; Portman, M.E. Adaptation of a freshwater evaluation framework to a coastal system: The case of Kamari, Santorini. J. Environ. Manag. 2021, 288, 112406. [Google Scholar] [CrossRef]
- Löwe, R.; Urich, C.; Kulahci, M.; Radhakrishnan, M.; Deletic, A.; Arnbjerg-Nielsen, K. Simulating flood risk under non-stationary climate and urban development conditions–Experimental setup for multiple hazards and a variety of scenarios. Environ. Model. Softw. 2018, 102, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Mostofi Camare, H.; Lane, D.E. Adaptation analysis for environmental change in coastal communities. Socio-Econ. Plan. Sci. 2015, 51, 34–45. [Google Scholar] [CrossRef]
- Freire, P.; Tavares, A.O.; Sá, L.; Oliveira, A.; Fortunato, A.B.; dos Santos, P.P.; Rilo, A.; Gomes, J.L.; Rogeiro, J.; Pablo, R. A local-scale approach to estuarine flood risk management. Nat. Hazards 2016, 84, 1705–1739. [Google Scholar] [CrossRef]
- Coelho, C.; Narra, P.; Marinho, B.; Lima, M. Coastal management software to support the decision-makers to mitigate coastal erosion. J. Mar. Sci. Eng. 2020, 8, 37. [Google Scholar] [CrossRef]
- Berte, E.; Panagopoulos, T. Enhancing city resilience to climate change by means of ecosystem services improvement: A SWOT analysis for the city of Faro, Portugal. Int. J. Urban Sustain. Dev. 2014, 6, 241–253. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 2017, 42, 169–180. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef]
- He, L.; Li, G.; Li, K.; Zhang, Y.; Guo, T. Damage of extreme water levels and the adaptation cost of dikes in the Pearl River Delta. J. Water Clim. Change 2020, 11, 829–838. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Hinkel, J.; Ward, P.J.; Mongelli, I.; Ciscar, J.C.; Feyen, L. Economic motivation for raising coastal flood defenses in Europe. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Wagenaar, D.J.; Dahm, R.J.; Diermanse, F.L.M.; Dias, W.P.S.; Dissanayake, D.; Vajja, H.P.; Gehrels, J.C.; Bouwer, L.M. Evaluating adaptation measures for reducing flood risk: A case study in the city of Colombo, Sri Lanka. Int. J. Disaster Risk Reduct. 2019, 37, 101162. [Google Scholar] [CrossRef]
- Fletcher, C.S.; Rambaldi, A.N.; Lipkin, F.; McAllister, R.R.J. Economic, equitable, and affordable adaptations to protect coastal settlements against storm surge inundation. Reg. Environ. Change 2016, 16, 1023–1034. [Google Scholar] [CrossRef] [Green Version]
- Hallegatte, S. Natural Disasters and Climate Change; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kontogianni, A.; Tourkolias, C.H.; Damigos, D.; Skourtos, M. Assessing sea level rise costs and adaptation benefits under uncertainty in Greece. Environ. Sci. Policy 2014, 37, 61–78. [Google Scholar] [CrossRef]
- Nakićenović, N.; Alcamo, J.; Grubler, A.; Riahi, K.; Roehrl, R.A.; Rogner, H.-H.; Victor, N. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Nakicenovic, N., Rob Swart, R., Eds.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Nguyen, T.D.L.; Bleys, B. Applying analytic hierarchy process to adaptation to saltwater intrusion in vietnam. Sustainability 2021, 13, 2311. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Bresch, D.N.; Calil, J.; Meliane, I. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS ONE 2018, 13, e0192132. [Google Scholar] [CrossRef]
- Zhou, Q.; Panduro, T.E.; Thorsen, B.J.; Arnbjerg-Nielsen, K. Adaption to extreme rainfall with open urban drainage system: An integrated hydrological cost-benefit analysis. Environ. Manag. 2013, 51, 586–601. [Google Scholar] [CrossRef]
- Locatelli, L.; Guerrero, M.; Russo, B.; Martí nez-Gomariz, E.; Sunyer, D.; Martí nez, M. Socio-economic assessment of green infrastructure for climate change adaptation in the context of urban drainage planning. Sustainability 2020, 12, 3792. [Google Scholar] [CrossRef]
- Van der Nat, A.; Vellinga, P.; Leemans, R.; van Slobbe, E. Ranking coastal flood protection designs from engineered to nature-based. Ecol. Eng. 2016, 87, 80–90. [Google Scholar] [CrossRef]
- André, C.; Boulet, D.; Rey-Valette, H.; Rulleau, B. Protection by hard defence structures or relocation of assets exposed to coastal risks: Contributions and drawbacks of cost-benefit analysis for long-term adaptation choices to climate change. Ocean. Coast. Manag. 2016, 134, 173–182. [Google Scholar] [CrossRef]
- Andreadis, O.; Chatzipavlis, A.; Hasiotis, T.; Monioudi, I.; Manoutsoglou, E.; Velegrakis, A. Assessment of and adaptation to beach erosion in islands: An integrated approach. J. Mar. Sci. Eng. 2021, 9, 859. [Google Scholar] [CrossRef]
- Haer, T.; Botzen, W.J.W.; van Roomen, V.; Connor, H.; Zavala-Hidalgo, J.; Eilander, D.M.; Ward, P.J. Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: A country-scale study for Mexico. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2018, 376, 20170329. [Google Scholar] [CrossRef]
- Van der Pol, T.; Hinkel, J.; Merkens, J.; MacPherson, L.; Vafeidis, A.T.; Arns, A.; Dangendorf, S. Regional economic analysis of flood defence heights at the German Baltic Sea coast: A multi-method cost-benefit approach for flood prevention. Clim. Risk Manag. 2021, 32, 100289. [Google Scholar] [CrossRef]
- Hérivaux, C.; Rey-Valette, H.; Rulleau, B.; Agenais, A.L.; Grisel, M.; Kuhfuss, L.; Maton, L.; Vinchon, C. Benefits of adapting to sea level rise: The importance of ecosystem services in the French Mediterranean sandy coastline. Reg. Environ. Change 2018, 18, 1815–1828. [Google Scholar] [CrossRef]
- OECD. Cost-Benefit Analysis and the Environment: Further Developments and Policy Use; OECD: Paris, France, 2018. [Google Scholar] [CrossRef]
- O’Mahony, T. Cost-Benefit Analysis and the environment: The time horizon is of the essence. Environ. Impact Assess. Rev. 2021, 89, 106587. [Google Scholar] [CrossRef]
- Dan, Z.; Che, Y.; Wang, X.; Zhou, P.; Han, Z.; Bu, D.; Lu, X.; Ma, W.; Chen, G. Environmental, economic, and energy analysis of municipal solid waste incineration under anoxic environment in Tibet Plateau. Environ. Res. 2022, 216, 114681. [Google Scholar] [CrossRef]
- Iversen, E.K.; Grimsrud, K.; Lindhjem, H.; Navrud, S. Mountains of Trouble: Accounting for Environmental Costs in Local Benefit-Driven Tourism Development; Discussion Papers No. 990; Statistics Norway: Oslo, Norway, 2022. [Google Scholar]
- Mdlolo, B.N.; Olanrewaju, O.A. Eradication of Solar Power Unsustainability through Cost-Benefit Analysis: KwaZulu Natal Case Study. Energies 2022, 15, 7554. [Google Scholar] [CrossRef]
- San Cristóbal, J.R. Multi Criteria Analysis in the Renewable Energy Industry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Golnar, M.; Beškovnik, B. A Multi-Criteria Approach for Evaluating a Sustainable Intermodal Transport Chain Affected by the COVID-19 Pandemic. J. Mar. Sci. Eng. 2022, 10, 1644. [Google Scholar] [CrossRef]
- Perez-Benitez, V.; Gemar, G.; Hernández, M. Multi-criteria analysis for business location decisions. Mathematics 2021, 9, 2615. [Google Scholar] [CrossRef]
- Hasan, M.A.; Chapman, R.; Frame, D.J. Acceptability of transport emissions reduction policies: A multi-criteria analysis. Renew. Sustain. Energy Rev. 2020, 133, 110298. [Google Scholar] [CrossRef]
- Kacare, M.; Pakere, I.; Gravelsins, A.; Blumberga, A. Impact Assessment of the Renewable Energy Policy Scenarios–a Case Study of Latvia. Environ. Clim. Technol. 2022, 26, 998–1019. [Google Scholar] [CrossRef]
- Li, C.; Negnevitsky, M.; Wang, X.; Yue, W.L.; Zou, X. Multi-criteria analysis of policies for implementing clean energy vehicles in China. Energy Policy 2019, 129, 826–840. [Google Scholar] [CrossRef]
- Abadie, L.M.; de Murieta, E.S.; Galarraga, I. The costs of sea-level rise: Coastal adaptation investments vs. inaction in Iberian coastal cities. Water 2020, 12, 1220. [Google Scholar] [CrossRef]
- Abadie, L.M.; Sainz de Murieta, E.; Galarraga, I. Investing in adaptation: Flood risk and real option application to Bilbao. Environ. Model. Softw. 2017, 95, 76–89. [Google Scholar] [CrossRef]
- Alves, A.; Sanchez, A.; Vojinovic, Z.; Seyoum, S.; Babel, M.; Brdjanovic, D. Evolutionary and holistic assessment of green-grey infrastructure for CSO reduction. Water 2016, 8, 402. [Google Scholar] [CrossRef]
- Dawson, D.A.; Hunt, A.; Shaw, J.; Gehrels, W.R. The Economic Value of Climate Information in Adaptation Decisions: Learning in the Sea-level Rise and Coastal Infrastructure Context. Ecol. Econ. 2018, 150, 1–10. [Google Scholar] [CrossRef]
- Dawson, R.J.; Ball, T.; Werritty, J.; Werritty, A.; Hall, J.W.; Roche, N. Assessing the effectiveness of non-structural flood management measures in the Thames Estuary under conditions of socio-economic and environmental change. Glob. Environ. Change 2011, 21, 628–646. [Google Scholar] [CrossRef]
- De Ruig, L.T.; Haer, T.; de Moel, H.; Botzen, W.J.W.; Aerts, J.C.J.H. A micro-scale cost-benefit analysis of building-level flood risk adaptation measures in Los Angeles. Water Resour. Econ. 2020, 32, 100147. [Google Scholar] [CrossRef]
- Hallegatte, S.; Ranger, N.; Mestre, O.; Dumas, P.; Corfee-Morlot, J.; Herweijer, C.; Wood, R.M. Assessing climate change impacts, sea level rise and storm surge risk in port cities: A case study on Copenhagen. Clim. Change 2011, 104, 113–137. [Google Scholar] [CrossRef]
- Kind, J.M. Economically efficient flood protection standards for the Netherlands. J. Flood Risk Manag. 2014, 7, 103–117. [Google Scholar] [CrossRef]
- Löwe, R.; Urich, C.; Sto. Domingo, N.; Mark, O.; Deletic, A.; Arnbjerg-Nielsen, K. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations–A new generation of urban planning tools. J. Hydrol. 2017, 550, 355–367. [Google Scholar] [CrossRef]
- Manocha, N.; Babovic, V. Sequencing infrastructure investments under deep uncertainty using real options analysis. Water 2018, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Tsvetanov, T.G.; Shah, F.A. The economic value of delaying adaptation to sea-level rise: An application to coastal properties in Connecticut. Clim. Change 2013, 121, 177–193. [Google Scholar] [CrossRef]
- Zhou, Q.; Halsnæs, K.; Arnbjerg-Nielsen, K. Economic assessment of climate adaptation options for urban drainage design in Odense, Denmark. Water Sci. Technol. 2012, 66, 1812–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Criterion | Eligibility Criteria | Exclusion Criteria |
---|---|---|
Timeline or period | 2010–2021 | Pre-2010 |
Language | English | Non-English |
Type of publication | Peer-reviewed scientific articles | Others |
Publication status | Published | Non-published |
Geographical context | Coastal areas | Others |
Spatial scale | Local, regional | National, continental, global |
Type of assessment | Socio-economic | Non-socioeconomic |
Environmental issue/action | Studies focused on climate-change-related impact and specific adaptation strategies/measures | Not related to climate-change impact and adaptation |
No. | Coding Fields |
---|---|
A. | Basic information |
1 | Article ID |
2 | Authors |
3 | Year of publication |
4 | Article title |
5 | Name of journal |
6 | Article keywords |
7 | Geographical scale of the analysis (A—Regional/provincial; B—Urban/peri-urban; C—District/neighbourhood/ street) |
8 | Location of the study area |
9 | Period of the analysis |
B. | Socio-economic assessment methods |
1 | Assessment method (A—Cost–benefit analysis; B—Multi-criteria analysis; C—Others; If others, please specify) |
2 | Timing of the assessment (A—Ex-ante; B—Interim; C—Final or ex-post evaluation) |
3 | Aim of the assessment method |
4 | Stakeholders involved (A—Citizens and citizen groups; B—Public authorities; C—Researchers/Academia; D—Private sector) |
5 | Type of stakeholder involvement |
C. | Climate-change impact and adaptation context |
1 | Climate hazards addressed in the study (A—Sea-level rise; B—Coastal erosion; C—Flooding; D—Multi-hazards; E—Others; If multi-hazards/others, please specify) |
2 | Sectoral climate impacts addressed in the study (A—Risk to tourism; B—Loss of cultural heritage; C—Damage to commercial buildings; D—Damage to residential buildings; E—Energy networks; F—Agriculture stress; G—Loss of wetlands; H—Loss of animal habitat; I—Damage to civil infrastructure; J—Risk to local economy; H—Others; If others, please specify) |
3 | Climate-change and socio-economic scenarios applied |
4 | Type of adaptation strategies assessed (A—EbA; B—Hard; C—Soft; D—Hybrid) |
5 | Specific adaptation strategies assessed |
D. | Performance |
1 | Main results of the assessment |
2 | Main recommendations provided by the study |
Type of Method | Studies | ||
---|---|---|---|
CBA | 24 | ||
MCA | 7 | ||
Other methods | Adaptive regional input–output (ARIO) | 1 | |
Demonstrate ecosystem services enabling innovations in the water sector (DESSIN) | 1 | ||
Ecosystem-based ranking (EBR) | 1 | ||
Effectiveness assessment with scenario-based approach | 2 | ||
Expected annual damages (EAD) | 1 | ||
Gains and losses in ecosystem services | 1 | ||
Hydrodynamic and optimization model | 1 | ||
Input–output model | 1 | ||
Real-options Analysis (ROA) | 2 | ||
Strengths–weaknesses–opportunities–threats (SWOT) | 1 | ||
System dynamics (SD) modeling | 2 | ||
Integrated approach | Benefit assessment and hazard modelling | 1 | |
CBA—cost effectiveness | 1 | ||
CBA/MCA | 1 | ||
Framework combining Sustainable Development Goals (SDG) and Sustainability Impact Score (SIS) | 1 | ||
NPV and ROA | 1 | ||
Qualitative modelling and Bayesian belief networks (BBN) | 1 | ||
Risk assessment and a decision-making approach | 1 | ||
Value-at-risk (VAR) and ROA | 1 | ||
Vulnerability assessment and evaluation | 1 |
Climate-Change Hazard | CBA | MCA | Other | Total | |
---|---|---|---|---|---|
Single hazards | Sea-level rise (SLR) | 2 | - | 3 | 5 |
Coastal erosion | 2 | 1 | - | 3 | |
Flooding | 14 | 2 | 8 | 24 | |
Saltwater intrusion | - | 1 | - | 1 | |
Urban heat island (UHI) | - | 1 | - | 1 | |
Storms | - | - | 2 | 2 | |
Extreme heat events | - | - | 1 | 1 | |
Ocean warming | - | - | 1 | 1 | |
Total (single hazards) | 18 | 5 | 15 | 38 | |
Multi-hazards | 6 | 2 | 8 | 16 | |
Total | 24 | 7 | 23 | 54 |
Adaptation Strategy | CBA | MCA | Other | Total | |
---|---|---|---|---|---|
Hard | 6 | - | 3 | 9 | |
Soft | 1 | 1 | 1 | 3 | |
EbA | - | 1 | 1 | 2 | |
Hybrid | Hard and soft | 12 | 2 | 9 | 23 |
Hard and EbA | 1 | - | - | 1 | |
Soft and EbA | 1 | - | 3 | 4 | |
Hard, soft, EbA | 3 | 3 | 6 | 12 | |
Total | 17 | 5 | 18 | 40 | |
Total | 24 | 7 | 23 | 54 |
Adaptation Strategies | Examples of Specific Adaptation Measures |
---|---|
Hard | - Dykes, groins, and seawalls - Breakwaters - Stormwater-pumping stations - Storm-surge dams - Drainage systems - Pipe enlargement - Removing constructions |
Soft | - Plans to restriction permission/forbid coastal constructions - Land-use change - Increased access to health care - Floodplain zoning - Flood-proofing of buildings - Early warning systems - Land-elevation planning - Sand nourishment |
EbA | - Wetland restoration - Rehabilitation of coastal dunes - Restoration of barrier/oyster reefs - Rehabilitation of mangrove forests - Green roofs - Urban parks - Detention basins - Earthen dykes - Green areas as drainage systems |
Hybrid | - Revegetation on dunes (EbA), wetland restoration (EbA), beach-access management (soft), dykes (hard) - Sea dykes (hard) and mangrove-forest rehabilitation (EbA) - Green roofs (EbA), bioretention cells and detention basins (EbA), permeable pavements (EbA), and infiltration trenches (soft) |
Adaptation-Strategy | Advantages | Disadvantages |
---|---|---|
Hard |
|
|
Soft |
|
|
EbA |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riera-Spiegelhalder, M.; Campos-Rodrigues, L.; Enseñado, E.M.; Dekker-Arlain, J.d.; Papadopoulou, O.; Arampatzis, S.; Vervoort, K. Socio-Economic Assessment of Ecosystem-Based and Other Adaptation Strategies in Coastal Areas: A Systematic Review. J. Mar. Sci. Eng. 2023, 11, 319. https://doi.org/10.3390/jmse11020319
Riera-Spiegelhalder M, Campos-Rodrigues L, Enseñado EM, Dekker-Arlain Jd, Papadopoulou O, Arampatzis S, Vervoort K. Socio-Economic Assessment of Ecosystem-Based and Other Adaptation Strategies in Coastal Areas: A Systematic Review. Journal of Marine Science and Engineering. 2023; 11(2):319. https://doi.org/10.3390/jmse11020319
Chicago/Turabian StyleRiera-Spiegelhalder, Mar, Luís Campos-Rodrigues, Elena Marie Enseñado, Janneke den Dekker-Arlain, Olympia Papadopoulou, Stratos Arampatzis, and Koen Vervoort. 2023. "Socio-Economic Assessment of Ecosystem-Based and Other Adaptation Strategies in Coastal Areas: A Systematic Review" Journal of Marine Science and Engineering 11, no. 2: 319. https://doi.org/10.3390/jmse11020319