Strong Genetic Structure and Limited Gene Flow among Populations of the Tropical Seagrass Thalassia hemprichii in the Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sample Collection
2.2. DNA Extraction and Microsatellite Analysis
2.3. Genotypic Variation and Clonality
2.4. Genetic Diversity and Recent Bottleneck Effect
2.5. Genetic Differentiation, Structure and Connectivity among Sites
3. Results
3.1. Scoring of Genotypes and Common Genotypes between/among Sites
3.2. Genetic Diversity and Bottleneck Event
3.3. Genetic Differentiation, Structure and Connectivity among Sites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orth, R.J.; Carruthers, T.J.B.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L., Jr.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S.; et al. A global crisis for seagrass ecosystems. BioScience 2006, 56, 987–996. [Google Scholar] [CrossRef]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.B.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L., Jr.; Hughes, A.R.; et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Short, F.; Carruthers, T.; Dennison, W.; Waycott, M. Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Biol. Ecol. 2007, 350, 3–20. [Google Scholar] [CrossRef]
- Alberto, F.; Massa, S.; Manent, P.; Diaz-Almela, E.; Arnaud-Haond, S.; Duarte, C.M.; Serrão, E.A. Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean–Atlantic transition region. J. Biogeogr. 2008, 35, 1279–1294. [Google Scholar] [CrossRef]
- Arnaud-Haond, S.; Migliaccio, M.; Diaz-Almela, E.; Teixeira, S.; Van De Vliet, M.S.; Alberto, F.; Procaccini, G.; Duarte, C.M.; Serrão, E.A. Vicariance patterns in the Mediterranean Sea: East–west cleavage and low dispersal in the endemic seagrass Posidonia oceanica. J. Biogeogr. 2007, 34, 963–976. [Google Scholar] [CrossRef]
- Van Dijk, J.K.; van Tussenbroek, B.I.; Jiménez-Durán, K.; Márquez-Guzmán, G.J.; Ouborg, J. High levels of gene flow and low population genetic structure related to high dispersal potential of a tropical marine angiosperm. Mar. Ecol. Prog. Ser. 2009, 390, 67–77. [Google Scholar] [CrossRef]
- Reusch, T.B.H.; Stam, W.T.; Olsen, J.L. A microsatellite-based estimation of clonal diversity and population subdivision in Zostera marina, a marine flowering plant. Mol. Ecol. 2000, 9, 127–140. [Google Scholar] [CrossRef]
- Muñiz-Salazar, R.; Talbot, S.L.; Sage, G.K.; Ward, D.H.; Cabello-Pasini, A. Population genetic structure of annual and perennial populations of Zostera marina L. along the Pacific coast of Baja California and the Gulf of California. Mol. Ecol. 2005, 14, 711–722. [Google Scholar] [CrossRef]
- Diekmann, O.E.; Serrão, E. Range-edge genetic diversity: Locally poor extant southern patches maintain a regionally diverse hotspot in the seagrass Zostera marina. Mol. Ecol. 2012, 21, 1647–1657. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Matsuki, Y.; Lian, C.; Fortes, M.D.; Uy, W.H.; Campos, W.L.; Nakaoka, M.; Nadaoka, K. Development of novel microsatellite markers in a tropical seagrass, Enhalus acoroides. Conserv. Genet. Resour. 2012, 4, 515–517. [Google Scholar] [CrossRef]
- Nakajima, Y.; Matsuki, Y.; Lian, C.; Fortes, M.D.; Uy, W.H.; Campos, W.L.; Nakaoka, M.; Nadaoka, K. The Kuroshio Current influences genetic diversity and population genetic structure of a tropical seagrass, Enhalus acoroides. Mol. Ecol. 2014, 23, 6029–6044. [Google Scholar] [CrossRef] [PubMed]
- Arriesgado, D.M.; Kurokochi, H.; Arriesgado, E.M.; Roa, E.C.; Gonzales, R.C.; Perpetua, A.D.; Bucay, D.M.; Iwakiri, A.; Lian, C. Genetic diversity and structure of dominant seagrass species in the southern Philippines for conservation and adaptive management. Philipp. J. Sci. 2023, 152, 277–289. [Google Scholar]
- Arriesgado, D.M.; Kurokochi, H.; Lian, C.; Nakajima, Y.; Matsuki, Y.; Nagai, S.; Yasuike, M.; Nakamura, Y.; Uy, W.H.; Fortes, M.D.; et al. Isolation and characterization of novel microsatellite markers for Cymodocea serrulata (Cymodoceaceae), a seagrass distributed widely in the Indo-Pacific region. Plant Species Biol. 2015, 30, 297–299. [Google Scholar] [CrossRef]
- Arriesgado, D.M.; Kurokochi, H.; Nakajima, Y.; Matsuki, Y.; Uy, W.H.; Fortes, M.D.; Campos, W.L.; Nadaoka, K.; Lian, C. Genetic diversity and structure of the tropical seagrass Cymodocea serrulata spanning its central diversity hotspot and range edge. Aquat. Ecol. 2015, 49, 357–372. [Google Scholar] [CrossRef]
- Arriesgado, D.M.; Nakajima, Y.; Matsuki, Y.; Lian, C.; Nagai, S.; Yasuike, M.; Nakamura, Y.; Fortes, M.D.; Uy, W.H.; Campos, W.L.; et al. Development of novel microsatellite markers for Cymodocea rotundata Ehrenberg (Cymodoceaceae), a pioneer seagrass species widely distributed in the Indo-Pacific. Conserv. Genet. Resour. 2014, 6, 135–138. [Google Scholar] [CrossRef]
- Arriesgado, D.M.; Kurokochi, H.; Nakajima, Y.; Matsuki, Y.; Uy, W.H.; Fortes, M.D.; Campos, W.L.; Nadaoka, K.; Lian, C. Population genetic diversity and structure of a dominant tropical seagrass, Cymodocea rotundata, in the Western Pacific region. Mar. Ecol. 2016, 37, 786–800. [Google Scholar] [CrossRef]
- Matsuki, Y.; Takahashi, A.; Nakajima, Y.; Lian, C.; Fortes, M.D.; Uy, W.H.; Campos, W.L.; Nakaoka, M.; Nadaoka, K. Development of microsatellite markers in a tropical seagrass Syringodium isoetifolium (Cymodoceaceae). Conserv. Genet. Resour. 2013, 5, 715–717. [Google Scholar] [CrossRef]
- Kurokochi, H.; Matsuki, Y.; Nakajima, Y.; Fortes, M.D.; Uy, W.H.; Campos, W.L.; Nadaoka, K.; Lian, C. A baseline for the genetic conservation of tropical seagrasses in the western North Pacific under the influence of the Kuroshio Current: The case of Syringodium isoetifolium. Conserv. Genet. 2016, 17, 103–110. [Google Scholar] [CrossRef]
- Fortes, M.D.; Ooi, J.L.S.; Tan, Y.M.; Prathep, A.; Bujang, J.S.; Yaakub, S.M. Seagrass in Southeast Asia: A review of status and knowledge gaps, and a road map for conservation. Bot. Mar. 2018, 61, 269–288. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, Y.; Holmer, M. Current trends in seagrass research in China (2010–2019). Aquat. Bot. 2020, 166, 103266. [Google Scholar] [CrossRef]
- Duarte, C.M.; Uri, J.S.; Agawin, N.S.R.; Fortes, M.D.; Vermaat, J.E.; Marbà, N. Flowering frequency of Philippine seagrasses. Bot. Mar. 1997, 40, 497–500. [Google Scholar] [CrossRef]
- Rollón, R.N.; de Ruyter van Steveninck, E.D.; van Vierssen, W. Spatio-temporal variation in sexual reproduction of the tropical seagrass Enhalus acoroides (L.f.) Royle in Cape Bolinao, NW Philippines. Aquat. Bot. 2003, 76, 339–354. [Google Scholar] [CrossRef]
- Van Dijk, J.K.; van Tussenbroek, B.I. Clonal diversity and structure related to habitat of the marine angiosperm Thalassia testudinum along the Atlantic coast of Mexico. Aquat. Bot. 2010, 92, 63–69. [Google Scholar] [CrossRef]
- Van Tussenbroek, B.I.; Valdivia-Carrillo, T.; Rodríguez-Virgen, I.T.; Sanabria-Alcaraz, S.N.M.; Jiménez-Durán, K.; Van Dijk, K.J.; Marquez-Guzmán, G.J. Coping with potential bi-parental inbreeding: Limited pollen and seed dispersal and large genets in the dioecious marine angiosperm Thalassia testudinum. Ecol. Evol. 2016, 6, 5542–5556. [Google Scholar] [CrossRef]
- Lacap, C.D.A.; Vermaat, J.E.; Rollon, R.N.; Nacorda, H.M. Propagule dispersal of the SE Asian seagrasses Enhalus acoroides and Thalassia hemprichii. Mar. Ecol. Prog. Ser. 2002, 235, 75–80. [Google Scholar] [CrossRef]
- Wu, K.; Chen, C.-N.N.; Soong, K. Long distance dispersal potential of two seagrasses Thalassia hemprichii and Halophila ovalis. PLoS ONE 2016, 11, e0156585. [Google Scholar] [CrossRef] [PubMed]
- Ravago-Gotanco, R.G.; Juinio-Meñez, M.A. Phylogeography of the mottled spinefoot Siganus fuscescens: Pleistocene divergence and limited genetic connectivity across the Philippine archipelago. Mol. Ecol. 2010, 19, 4520–4534. [Google Scholar] [CrossRef] [PubMed]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved version released. EOS Trans. AGU 2013, 94, 409–410. [Google Scholar] [CrossRef]
- Lian, C.L.; Oishi, R.; Miyashita, N.; Nara, K.; Nakaya, H.; Wu, B.; Zhou, Z.; Hogetsu, T. Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol. Ecol. 2003, 12, 609–618. [Google Scholar] [CrossRef]
- Matsuki, Y.; Nakajima, Y.; Lian, C.; Fortes, M.D.; Uy, W.H.; Campos, W.L.; Nakaoka, M.; Nadaoka, K. Development of microsatellite markers for Thalassia hemprichii (Hydrocharitaceae), a widely distributed seagrass in the Indo-Pacific. Conserv. Genet. Resour. 2012, 4, 1007–1010. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Arnaud-Haond, S.; Belkhir, K. GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol. Ecol. Notes 2007, 7, 15–17. [Google Scholar] [CrossRef]
- Arnaud-Haond, S.; Alberto, F.; Teixeira, S.; Procaccini, G.; Serrão, E.A.; Duarte, C.M. Assessing genetic diversity in clonal organisms: Low diversity or low resolution? Combining power and cost efficiency in selecting markers. J. Hered. 2005, 96, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Dorken, M.; Eckert, C.G. Severely reduced sexual reproduction in northern populations of clonal plant, Decodon verticillatus (Lythraceae). J. Ecol. 2001, 89, 339–350. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 1995, 86, 485–486. [Google Scholar] [CrossRef]
- Piry, S.; Luikart, G.; Cornuet, J.M. Bottleneck: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145, 1219–1228. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, P.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: http://www.R-project.org (accessed on 22 December 2022).
- Jay, F.; François, O.; Durand, E.Y.; Blum, M.G.B. POPS: A software for prediction of population genetic structure using latent regression models. J. Stat. Softw. 2015, 68, 19. [Google Scholar] [CrossRef]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.A.; Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 2003, 163, 1177–1191. [Google Scholar] [CrossRef]
- Hernawan, U.E.; van Dijk, K.J.; Kendrick, G.A.; Feng, M.; Biffin, E.; Lavery, P.S.; McMahon, K. Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Mol. Ecol. 2017, 26, 1008–1021. [Google Scholar] [CrossRef]
- Olsen, J.L.; Stam, W.T.; Coyer, J.A.; Reusch, T.B.H.; Billingham, M.; Boström, C.; Calvert, E.; Christie, H.; Granger, S.; la Lumière, R.; et al. North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Mol. Ecol. 2004, 13, 1923–1941. [Google Scholar] [CrossRef] [PubMed]
- Vermaat, J.E. Linking clonal growth patterns and ecophysiology allows the prediction of meadow-scale dynamics of seagrass beds. Perspect. Plant Ecol. Evol. Syst. 2009, 11, 137–155. [Google Scholar] [CrossRef]
- Ridgway, T.; Riginos, C.; Davis, J.; Hoegh-Guldberg, O. Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine Protected Areas. Mal. Ecol. Prog. Ser. 2008, 354, 161–168. [Google Scholar] [CrossRef]
- Sandoval-Castro, E.; Muñiz-Salazar, R.; Enríquez-Paredes, L.M.; Riosmena-Rodríguez, R.; Dodd, R.S.; Tovilla-Hernández, C.; Arredondo-García, M.C. Genetic population structure of red mangrove (Rhizophora mangle L.) along the northwestern coast of Mexico. Aquat. Bot. 2012, 99, 20–26. [Google Scholar] [CrossRef]
- Reusch, T.B.H.; Ehlers, A.; Hämmerli, A.; Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. USA 2005, 102, 2826–2831. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, N.; Nagai, S.; Hamaguchi, M.; Okaji, K.; Gérard, K.; Nadaoka, K. Gene flow of Acanthaster planci (L.) in relation to ocean currents revealed by microsatellite analysis. Mol. Ecol. 2009, 18, 1574–1590. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, A.; Tada, I.; Nagano, A.J.; Yasuda, N. Genetic structure of Pacific crown-of-thorns starfish (Acanthaster cf. solaris) in southern Japan based on genome-wide RADseq analysis. Coral Reefs 2021, 40, 1379–1385. [Google Scholar] [CrossRef]
- Nakajima, Y.; Nishikawa, A.; Iguchi, A.; Sakai, K. Gene flow and genetic diversity of a broadcast-spawning coral in northern peripheral populations. PLoS ONE 2010, 5, e11149. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, K.; Zayasu, Y.; Nakajima, Y.; Arakaki, N.; Suzuki, G.; Satoh, N.; Shinzato, C. Genomic analysis of a reef-building coral, Acropora digitifera, reveals complex population structure and a migration network in the Nansei Islands, Japan. Mol. Ecol. 2022, 31, 5270–5284. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.M.; Baird, A.H.; Connolly, S.R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 2008, 27, 529–539. [Google Scholar] [CrossRef]
- Kendrick, G.A.; Waycott, M.; Carruthers, T.J.B.; Cambridge, M.L.; Hovey, R.; Krauss, S.L.; Lavery, P.S.; Les, D.H.; Lowe, R.J.; Mascaró i Vidal, O.; et al. The central role of dispersal in the maintenance and persistence of seagrass populations. BioScience 2012, 62, 56–65. [Google Scholar] [CrossRef]
- Kendrick, G.A.; Orth, R.J.; Statton, J.; Hovey, R.; Ruiz Montoya, L.; Lowe, R.J.; Krauss, S.L.; Sinclair, E.A. Demographic and genetic connectivity: The role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol. Rev. 2017, 92, 921–938. [Google Scholar] [CrossRef]
- Nakajima, Y.; Matsuki, Y.; Arriesgado, D.M.; Campos, W.L.; Nadaoka, K.; Lian, C. Population genetics information for the regional conservation of a tropical seagrass, Enhalus acoroides, around the Guimaras Strait, Philippines. Conserv. Genet. 2017, 18, 789–798. [Google Scholar] [CrossRef]
- Nguyen, X.V.; Nguyen-Nhat, N.T.; Nguyen, X.T.; Dao, V.H.; McDermid, K.J.; Papenbrock, J. Microsatellite-based analysis of the genetic diversity and population structure of the seagrass species Thalassia hemprichii from southern Viet Nam. Aquat. Bot. 2022, 178, 103497. [Google Scholar] [CrossRef]
- Voris, H.K. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations. J. Biogeogr. 2000, 27, 1153–1167. [Google Scholar] [CrossRef]
- Thomson, A.C.G.; York, P.H.; Smith, T.M.; Sherman, C.D.H.; Booth, D.J.; Keough, M.J.; Ross, D.J.; Macreadie, P.I. Seagrass viviparous propagules as a potential long-distance dispersal mechanism. Estuaries Coast. 2015, 38, 927–940. [Google Scholar] [CrossRef]
- Ito, Y.; Ohi-Toma, T.; Murata, J.; Tanaka, N. Hybridization and polyploidy of an aquatic plant, Ruppia (Ruppiaceae), inferred from plastid and nuclear DNA phylogenies. Am. J. Bot. 2010, 97, 1156–1167. [Google Scholar] [CrossRef]
- Martínez-Garrido, J.; Bermejo, R.; Serrão, E.A.; Sánchez-Lizaso, J.; González-Wangüemert, M. Regional genetic structure in the aquatic macrophyte Ruppia cirrhosa suggests dispersal by waterbirds. Estuaries Coast. 2017, 40, 1705–1716. [Google Scholar] [CrossRef]
- Fourqurean, J.W.; Duarte, C.M.; Kennedy, H.; Marbà, N.; Holmer, M.; Mateo, M.A.; Apostolaki, E.T.; Kendrick, G.A.; Krause-Jensen, D.; McGlathery, K.J.; et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 2012, 5, 505–509. [Google Scholar] [CrossRef]
No. | Code | Site | N | NMLG | G | R | NA | AR | PA | HO | HE | FIS | Bottleneck (IAM/TPM) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | B-CNR | Chanarian | 44 | 36 | 36 | 0.81 | 2.56 | 2.25 | 0 | 0.207 | 0.225 | 0.217 | 0.406/0.656 |
2 | B-NLP | Nalipang | 43 | 41 | 41 | 0.95 | 3.78 | 3.19 | 0 | 0.425 | 0.430 | 0.007 | 0.064/0.150 |
3 | N-TPL | Tapel | 42 | 27 | 31 | 0.73 | 2.89 | 2.39 | 0 | 0.176 | 0.175 | –0.012 | 0.922/0.969 |
4 | N-BYG | Bayog | 45 | 17 | 17 | 0.36 | 2.89 | 2.89 | 0 | 0.261 | 0.271 | 0.013 | 0.500/0.922 |
5 | W-AND | Anda Island | 40 | 39 | 39 | 0.97 | 4.89 | 4.16 | 0 | 0.382 | 0.399 | –0.002 | 0.180/0.410 |
6 | W-SAN | Santiago Island | 42 | 40 | 40 | 0.95 | 4.78 | 4.00 | 0 | 0.328 | 0.363 | 0.041 | 0.410/0.633 |
7 | W-ILM | Ilog-Marino | 43 | 42 | 42 | 0.98 | 4.67 | 3.94 | 0 | 0.368 | 0.388 | 0.047 | 0.545/0.875 |
8 | W-CMY | Camayan Beach | 44 | 39 | 39 | 0.88 | 4.33 | 3.59 | 3 | 0.496 | 0.458 | –0.082 | 0.180/0.850 |
9 | W-MOR | Morong | 44 | 44 | 44 | 1.00 | 3.22 | 2.67 | 0 | 0.429 | 0.394 | –0.091 | 0.150/0.455 |
10 | D-BLT | Baletero | 39 | 37 | 38 | 0.97 | 3.33 | 3.04 | 0 | 0.313 | 0.330 | 0.135 | 0.344/0.656 |
11 | D-MCH | Manila Channel | 37 | 36 | 37 | 1.00 | 3.33 | 2.87 | 0 | 0.288 | 0.360 | 0.226 | 0.191/0.473 |
12 | D-HNR | Hondura Bay | 23 | 21 | 22 | 0.95 | 2.44 | 2.36 | 0 | 0.232 | 0.287 | 0.127 | 0.289/0.531 |
13 | D-LMB | Lumang Bayan | 30 | 26 | 26 | 0.86 | 2.89 | 2.86 | 0 | 0.372 | 0.360 | 0.078 | 0.180/0.367 |
14 | E-PNT | Puntian | 44 | 36 | 36 | 0.81 | 2.33 | 2.20 | 0 | 0.306 | 0.323 | 0.142 | 0.148/0.188 |
15 | E-CGB | Cagbalete Island | 44 | 41 | 41 | 0.93 | 3.56 | 2.90 | 0 | 0.333 | 0.350 | 0.016 | 0.191/0.527 |
16 | E-BAC | Bacon | 23 | 19 | 20 | 0.86 | 2.22 | 2.15 | 0 | 0.261 | 0.265 | 0.042 | 0.078/0.500 |
17 | E-SSB | San Sebastian | 24 | 24 | 24 | 1.00 | 3.89 | 3.59 | 0 | 0.361 | 0.388 | 0.242 | 0.674/0.752 |
18 | E-BLM | Bahao Libmanan | 31 | 30 | 30 | 0.97 | 2.89 | 2.62 | 0 | 0.356 | 0.329 | –0.070 | 0.039/0.219 |
19 | P-HND | Honda Bay | 41 | 38 | 38 | 0.93 | 5.78 | 4.49 | 9 | 0.348 | 0.431 | 0.159 | 0.230/0.578 |
20 | P-PPB | Puerto Princesa Bay | 44 | 4 | 4 | 0.07 | 1.78 | – | 0 | – | – | – | – |
21 | V-UNB | Union Beach | 33 | 32 | 32 | 0.97 | 4.22 | 3.69 | 0 | 0.347 | 0.422 | 0.187 | 0.156/0.473 |
22 | V-STN | Sitio Nabinbinan | 34 | 34 | 34 | 1.00 | 4.33 | 3.81 | 0 | 0.395 | 0.433 | 0.078 | 0.150/0.326 |
23 | V-SII | Siit Bay | 42 | 37 | 37 | 0.88 | 4.00 | 3.51 | 0 | 0.312 | 0.361 | 0.102 | 0.674/0.918 |
24 | V-BTY | Bantayan | 43 | 43 | 43 | 1.00 | 3.67 | 3.12 | 1 | 0.292 | 0.341 | 0.164 | 0.629/0.963 |
25 | V-ALB | Alona Beach | 44 | 41 | 41 | 0.93 | 4.33 | 3.44 | 0 | 0.374 | 0.430 | 0.182 | 0.191/0.371 |
26 | V-PAB | Palm Beach | 37 | 37 | 37 | 1.00 | 4.33 | 3.73 | 1 | 0.417 | 0.484 | 0.124 | 0.014/0.326 |
27 | V-TCL | Tacloban | 38 | 13 | 22 | 0.57 | 1.67 | 1.62 | 0 | 0.172 | 0.145 | –0.127 | 0.438/0.563 |
28 | V-GUI | Guiuan | 36 | 36 | 36 | 1.00 | 2.78 | 2.62 | 1 | 0.386 | 0.397 | 0.022 | 0.008/0.027 |
29 | M-OPL | Opol | 31 | 27 | 30 | 0.97 | 2.89 | 2.58 | 0 | 0.352 | 0.367 | 0.059 | 0.027/0.156 |
30 | M-LGD | Laguindingan | 41 | 31 | 31 | 0.75 | 4.56 | 3.90 | 2 | 0.466 | 0.468 | –0.006 | 0.102/0.674 |
31 | M-RIZ | Rizal | 37 | 29 | 31 | 0.83 | 4.44 | 3.95 | 1 | 0.384 | 0.427 | 0.074 | 0.455/0.898 |
32 | M-BAT | Bato | 39 | 14 | 17 | 0.42 | 2.67 | 2.67 | 0 | 0.471 | 0.417 | –0.080 | 0.014/0.020 |
33 | M-SAG | San Agustin | 39 | 22 | 22 | 0.55 | 3.56 | 3.41 | 1 | 0.359 | 0.368 | 0.059 | 0.527/0.680 |
Source | d.f. | SS | Variance (%) | F-Statistic | p Value |
---|---|---|---|---|---|
Among sites | 31 | 1463.426 | 0.692 (29%) | FST = 0.291 | 0.001 |
Within sites | 2076 | 3499.762 | 1.686 (71%) | ||
Total | 2107 | 4963.188 | 2.378 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakajima, Y.; Matsuki, Y.; Fortes, M.D.; Uy, W.H.; Campos, W.L.; Nadaoka, K.; Lian, C. Strong Genetic Structure and Limited Gene Flow among Populations of the Tropical Seagrass Thalassia hemprichii in the Philippines. J. Mar. Sci. Eng. 2023, 11, 356. https://doi.org/10.3390/jmse11020356
Nakajima Y, Matsuki Y, Fortes MD, Uy WH, Campos WL, Nadaoka K, Lian C. Strong Genetic Structure and Limited Gene Flow among Populations of the Tropical Seagrass Thalassia hemprichii in the Philippines. Journal of Marine Science and Engineering. 2023; 11(2):356. https://doi.org/10.3390/jmse11020356
Chicago/Turabian StyleNakajima, Yuichi, Yu Matsuki, Miguel D. Fortes, Wilfredo H. Uy, Wilfredo L. Campos, Kazuo Nadaoka, and Chunlan Lian. 2023. "Strong Genetic Structure and Limited Gene Flow among Populations of the Tropical Seagrass Thalassia hemprichii in the Philippines" Journal of Marine Science and Engineering 11, no. 2: 356. https://doi.org/10.3390/jmse11020356
APA StyleNakajima, Y., Matsuki, Y., Fortes, M. D., Uy, W. H., Campos, W. L., Nadaoka, K., & Lian, C. (2023). Strong Genetic Structure and Limited Gene Flow among Populations of the Tropical Seagrass Thalassia hemprichii in the Philippines. Journal of Marine Science and Engineering, 11(2), 356. https://doi.org/10.3390/jmse11020356