Experimental Study on Poisson’s Ratio of Silty-Fine Sand with Saturation
Abstract
:1. Introduction
2. Experimental Investigations
2.1. Test Material
2.2. Test Program
2.3. Specimen Preparation and Test Method
2.4. Measurement of Arrival Time
3. Test Results
3.1. P-Wave Velocity and S-Wave Velocity at Different Saturations
3.2. Poisson’s Ratio ν and Prediction Model
3.2.1. Influence of Saturation on Poisson’s Ratio
3.2.2. Influence Mechanism of Saturation on Poisson’s Ratio
3.2.3. Prediction Model of Poisson’s Ratio with Saturation
3.2.4. Validation of the Prediction Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, C.M.; Gu, L.X.; Li, G.Y.; Zhao, Y.Y.; Jiang, W.S. Geology and formation mechanism of late Quaternary shallow biogenic gas reservoirs in the Hangzhou Bay area, eastern China. AAPG Bull. 2004, 88, 613–625. [Google Scholar] [CrossRef]
- Mazumdar, A.; Peketi, A.; Dewangan, P.; Badesab, F.; Ramprasad, T.; Ramana, M.V. Shallow gas charged sediments off the Indian west coast: Genesis and distribution. Mar. Geol. 2009, 267, 71–85. [Google Scholar] [CrossRef]
- Mabrouk, A.; Rowe, R.K. Effect of gassy sand lenses on a deep excavation in a clayey soil. Eng. Geol. 2011, 122, 292–302. [Google Scholar] [CrossRef]
- Wang, X.C.; Pan, D.Y. Application of AVO attribute inversion technology to gas hydrate identification in the Shenhu Area, South China Sea. Mar. Pet. Geol. 2017, 80, 23–31. [Google Scholar] [CrossRef]
- Williamson, P.E.; Kroh, F. The role of amplitude versus offset technology in promoting offshore petroleum exploration in Australia. APPEA J. 2007, 47, 163–176. [Google Scholar] [CrossRef]
- Zong, Z.; Yin, X.; Wu, G. AVO inversion and poroelasticity with P-and S-wave moduli. Geophysics 2012, 77, 17–24. [Google Scholar] [CrossRef]
- Hamada, G.M. Reservoir fluids identification using Vp/Vs ratio? Oil Gas Sci. Technol. 2004, 59, 649–654. [Google Scholar] [CrossRef]
- Gregory, A.R. Fluid saturation effects on dynamic elastic properties of sedimentary rocks. Geophysics 1976, 41, 895–921. [Google Scholar] [CrossRef]
- Christensen, N.L. Poisson’s ratio and crustal seismology. J. Geophys. Res. Solid Earth 1996, 101, 3139–3156. [Google Scholar] [CrossRef]
- Karray, M.; Lefebvre, G. Significance and evaluation of Poisson’s ratio in Rayleigh wave testing. Can. Geotech. J. 2008, 45, 624–635. [Google Scholar] [CrossRef]
- Li, Y.; Otsubo, M.; Kuwano, R. Interpretation of static and dynamic Young’s moduli and Poisson’s ratio of granular assemblies under shearing. Comput. Geotech. 2022, 142, 104560. [Google Scholar] [CrossRef]
- Kumar, T.S.; Duc, C.T.; Vahedifard, F. Poisson’s ratio characteristic curve of unsaturated soils. J. Geotech. Geoenvironmental Eng. 2021, 147, 04020149. [Google Scholar] [CrossRef]
- Suwal, L.P.; Kuwano, R. Statically and dynamically measured Poisson’s ratio of granular soils on triaxial laboratory specimens. Geotech. Test. J. 2013, 36, 493–505. [Google Scholar] [CrossRef]
- Xie, Z.A. Application of 3D AVO interpretation technique to lithological reservoir in the Hongze Area. Appl. Geophys. 2005, 2, 168–174. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Gao, Q.; Li, X.; Yang, Z. Quantitative prediction of porosity and gas saturation based on a new dual-porosity rock-physics model and Shuey’s Poisson ratio for tight sandstone reservoirs. J. Pet. Sci. Eng. 2022, 216, 110826. [Google Scholar] [CrossRef]
- Ayres, A.; Theilen, F. Relationship between P- and S-wave velocities and geological properties of near-surface sediments of the continental slope of the Barents sea. Geophys. Prospect. 2001, 47, 431–441. [Google Scholar] [CrossRef]
- Salem, H.S. Poisson’s ratio and the porosity of surface soils and shallow sediments, determined from seismic compressional and shear wave velocities. Géotechnique 2000, 50, 461–463. [Google Scholar] [CrossRef]
- Velea, D.; Shields, F.D.; Sabatier, J.M. Elastic wave velocities in partially saturated Ottawa sand. Soil Sci. Soc. Am. J. 2000, 64, 1226–1234. [Google Scholar] [CrossRef]
- Gao, W.; Watts, C.W.; Ren, T.; Shin, H.C.; Taherzadeh, S.; Attenborough, K.; Whalley, W.R. Estimating penetrometer resistance and matric potential from the velocities of shear and compression waves. Soil Sci. Soc. Am. J. 2013, 77, 721–728. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.; Soga, K.; Mitchell, J. Observation of Biot compressional wave of the second kind in granular soils. Geótechnique 1997, 47, 133–147. [Google Scholar] [CrossRef]
- Kumar, J.; Madhusudhan, B.N. Dynamic properties of sand from dry to fully saturated states. Géotechnique 2012, 62, 45–54. [Google Scholar] [CrossRef]
- Wu, S.; Gray, D.H.; Richart, F.E., Jr. Capillary effects on dynamic modulus of sands and silts. J. Geotech. Eng. 1984, 110, 1188–1203. [Google Scholar] [CrossRef]
- Pereira, J.H.; Fredlund, D.G. Volume change behavior of collapsible compacted gneiss soil. J. Geotech. Geoenviron. Eng. 2000, 126, 907–916. [Google Scholar] [CrossRef]
- Inci, G.; Yesiller, N.; Kagawa, T. Experimental investigation of dynamic response of compacted clayey soils. Geotech. Test. J. 2003, 26, 125–141. [Google Scholar]
- Patel, A.; Ingale, R.; Bhanarkar, K.B. Effect of compaction states and the confining pressure on Poisson’s ratio of stratified and non-stratified soils. Arab. J. Sci. Eng. 2018, 43, 1983–1999. [Google Scholar] [CrossRef]
- Oh, W.T.; Vanapalli, S.K. Relationship between Poisson’s ratio and soil suction for unsaturated soils. In Proceedings of the 5th Asia-Pacific Conference on Unsaturated Soils; Kasetsart University: Bangkok, Thailand, 2011; pp. 239–245. [Google Scholar]
- Oh, W.T.; Vanapalli, S.K. Influence of Poisson’s ratio on the stress vs. settlement behavior of shallow foundations in unsaturated fine-grained soils. Soils Rocks 2016, 39, 71–79. [Google Scholar] [CrossRef]
- Dong, Y. Dependency of poisson’s ratio on water contents for unsaturated soils. In Proceedings of the 7th Asia-Pacific Conference on Unsaturated Soils, Nagoya City, Japan, 23–25 August 2019. [Google Scholar]
- Wang, Y.; Kong, L.W.; Wang, Y.L.; Wang, M.; Cai, K.J. Deformation analysis of shallow gas-bearing ground from controlled gas release in Hangzhou Bay of China. Int. J. Geomech. 2018, 18, 04017122. [Google Scholar] [CrossRef]
- ASTM Standard D7928-21e1; Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the 527 Sedimentation (Hydrometer) Analysis. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM Standard D854-14; Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International: West Conshohocken, PA, USA, 2016.
- Genuchten, M.T.V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Wang, Y.; Yang, Z.Y.; Lai, X.H.; Chen, C. Experimental Study on Small-Strain Shear Modulus of Unsaturated Silty-Fine Sand. Appl. Sci. 2022, 12, 8743. [Google Scholar] [CrossRef]
- ASTM Standard D7181-20; Standard Test Methods for Consolidated Drained Triaxial Compression Test for Soils. ASTM International: West Conshohocken, PA, USA, 2020.
- Pham, H.Q. A Volume-Mass Constitutive Model for Unsaturated Soils. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2005. [Google Scholar]
- Clayton, C.; Theron, M.; Best, A. The measurement of vertical shear-wave velocity using side-mounted bender elements in the triaxial apparatus. Géotechnique 2004, 54, 495–498. [Google Scholar] [CrossRef]
- Lee, J.S.; Santamarina, J.C. Bender elements: Performance and signal interpretation. J. Geotech. Geoenvironmental Eng. 2005, 131, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Youn, J.U.; Choo, Y.W.; Kim, D.S. Measurement of small-strain shear modulus G max of dry and saturated sands by bender element, resonant column, and torsional shear tests. Can. Geotech. J. 2008, 45, 1426–1438. [Google Scholar] [CrossRef]
- Gu, X.; Yang, J.; Huang, M.; Gao, G. Bender element tests in dry and saturated sand: Signal interpretation and result comparison. Soils Found. 2015, 55, 951–962. [Google Scholar] [CrossRef] [Green Version]
- Gassmann, F. Über die Elastizität poröser Medien. Vierteljahrsschr. Nat. Ges. Zürich 1951, 96, 1–23. [Google Scholar]
- Emerson, M.; Foray, P. Laboratory P-wave measurements in dry and saturated sand. Acta Geotech. 2006, 1, 167–177. [Google Scholar] [CrossRef]
- Barton, N. Rock Quality, Seismic Velocity, Attenuation and Anisotropy; Taylor & Francis: London, UK, 2007. [Google Scholar]
- Lu, N.; Dong, Y. Closed-form equation for thermal conductivityof unsaturated soils at room temperature. J. Geotech. Geoenvironmental Eng. 2015, 141, 04015016. [Google Scholar] [CrossRef] [Green Version]
- Başer, T.; Dong, Y.; Lu, N.; McCartney, J.S. Role of considering non-constant soil thermal parameters in the simulation of geothermal heat storage systems in the vadose zone. In Proceedings of the 8th Asian Young Geotechnical Engineers Conference: Challenges and Innovations in Geotechnics; Zhussupbekov, A., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 137–142. [Google Scholar]
- Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E.; Clifton, A.W. Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 1996, 33, 379–392. [Google Scholar] [CrossRef]
- Tarantino, A. A water retention model for deformable soils. Géotechnique 2009, 59, 751–762. [Google Scholar] [CrossRef]
- Simms, P.; Yanful, E. Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests. Can. Geotech. J. 2001, 38, 741–754. [Google Scholar] [CrossRef]
- Soltani, A.; Azimi, M.; Deng, A.; Taheri, A. A simplified method for determination of the soil–water characteristic curve variables. Int. J. Geotech. Eng. 2019, 13, 316–325. [Google Scholar] [CrossRef]
- Irfan, M.; Uchimura, T. Effects of soil moisture on shear and dilatational wave velocities measured in laboratory triaxial tests. In Proceedings of the 5th International Young Geotechnical Engineers’ Conference; IOS Press: Amsterdam, The Netherlands, 2013; pp. 505–509. [Google Scholar]
Specific Gravity | Particle Mass Composition (%) | D50 (mm) | D10 (mm) | Dr | ||||
---|---|---|---|---|---|---|---|---|
>0.5 mm | 0.5~0.075 mm | <0.075 mm | <0.01 mm | <0.005 mm | ||||
2.68 | 2.0 | 78.7 | 19.3 | 10.0 | 4.0 | 0.243 | 0.010 | 31.2% |
Matrix Suction (kPa) | 3.5 | 3.8 | 4 | 5.2 | 6 | 8 | 10 | 14 | 40 | 100 | 200 | 495 |
Saturation (%) | 98.7 | 97.5 | 95.4 | 80 | 69 | 53 | 44 | 34 | 20 | 17 | 15 | 13 |
Parameters | σ = 400 kPa | σ = 300 kPa | σ = 200 kPa | σ = 100 kPa |
---|---|---|---|---|
A | 4.5165 × 10−38 | 2.0485 × 10−38 | 8.6409 × 10−39 | 4.0231 × 10−40 |
B | −1.183 | −1.173 | −1.161 | −1.122 |
C | −0.06593 | −0.06564 | −0.06459 | −0.06524 |
E | 13.871 | 13.408 | 13.614 | 13.354 |
vinp | 0.252 | 0.261 | 0.272 | 0.281 |
R2(Sr ≥ Sr(inp)) | 0.9911 | 0.9898 | 0.9887 | 0.9818 |
R2(Sr < Sr(inp)) | 0.9839 | 0.9798 | 0.9779 | 0.9828 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, K.; Wang, Y.; Lai, X.; Wang, Y.; Yang, Z. Experimental Study on Poisson’s Ratio of Silty-Fine Sand with Saturation. J. Mar. Sci. Eng. 2023, 11, 427. https://doi.org/10.3390/jmse11020427
Yan K, Wang Y, Lai X, Wang Y, Yang Z. Experimental Study on Poisson’s Ratio of Silty-Fine Sand with Saturation. Journal of Marine Science and Engineering. 2023; 11(2):427. https://doi.org/10.3390/jmse11020427
Chicago/Turabian StyleYan, Kai, Yong Wang, Xianghua Lai, Yanli Wang, and Zhiyong Yang. 2023. "Experimental Study on Poisson’s Ratio of Silty-Fine Sand with Saturation" Journal of Marine Science and Engineering 11, no. 2: 427. https://doi.org/10.3390/jmse11020427
APA StyleYan, K., Wang, Y., Lai, X., Wang, Y., & Yang, Z. (2023). Experimental Study on Poisson’s Ratio of Silty-Fine Sand with Saturation. Journal of Marine Science and Engineering, 11(2), 427. https://doi.org/10.3390/jmse11020427