Sediment Budget and Net Sediment Transport on a Coast Dominated by Waves and Offshore Currents: A Case Study on the Ishikawa Coast and Its Surrounding Areas in Japan
Abstract
:1. Introduction
2. Study Area
2.1. Characteristics of the Ishikawa Coast and Its Surrounding Coasts
2.2. External Forces
3. Materials and Methods
3.1. Datasets
3.2. Estimation of Sediment Volume and Budget
3.3. Estimation of Longshore Sediment Transport Rate
3.4. Estimation of Sediment Discharge from the Tedori River
4. Results and Discussion
4.1. Long-Term Trends in Sediment Volume Variation along the Ishikawa Coast5
4.2. Sediment Discharge from the Tedori River to the Ishikawa Coast
4.3. Longshore Sediment Transport in the Surf and Offshore Zones
4.4. Sediment Budget and Net Sediment Transport along the Ishikawa Coast
4.5. Variability of Net Sediment Transport and Budget
4.6. Morphological Changes on the Coasts Adjacent to the Ishikawa Coast
4.6.1. Interaction with the Southwestern Coast
4.6.2. Interaction with the Northeastern Coast
4.7. Net Sediment Transport and Regional Sediment Budget in the Southern Part of the Littoral Sediment Cell (SLC) Considered in This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boateng, I.; Bray, M.; Hooke, J. Estimating the fluvial sediment input to the coastal sediment budget: A case study of Ghana. Geomorphology 2012, 138, 100–110. [Google Scholar] [CrossRef]
- Cooper, N.J.; Hooke, J.M.; Bray, M.J. Predicting coastal evolution using a sediment budget approach: A case study from southern England. Ocean. Coast. Manag. 2001, 44, 711–728. [Google Scholar] [CrossRef]
- Rosati, J.D. Concepts in sediment budgets. J. Coast. Res. 2005, 21, 307–322. [Google Scholar] [CrossRef]
- Restrepo, J.D.; Escobar, R.; Tosic, M. Fluvial fluxes from the Magdalena River into Cartagena Bay, Caribbean Colombia: Trends, future scenarios, and connections with upstream human impacts. Geomorphology 2018, 302, 92–105. [Google Scholar] [CrossRef]
- Willis, C.M.; Griggs, G.B. Reductions in fluvial sediment discharge by coastal dams in California and implications for beach sustainability. J. Geol. 2003, 111, 167–182. [Google Scholar] [CrossRef]
- Cappucci, S.; Bertoni, D.; Cipriani, L.E.; Boninsegni, G.; Sarti, G. Assessment of the Anthropogenic Sediment Budget of a Littoral Cell System (Northern Tuscany, Italy). Water 2020, 12, 3240. [Google Scholar] [CrossRef]
- Byrnes, M.R.; Hiland, M.W. Large-scale sediment transport patterns on the continental shelf and influence on shoreline response: St. Andrew Sound, Georgia to Nassau Sound, Florida, USA. Mar. Geol. 1995, 126, 19–43. [Google Scholar] [CrossRef]
- Sanderson, P.G.; Eliot, I. Compartmentalisation of beachface sediments along the southwestern coast of Australia. Mar. Geol. 1999, 162, 145–164. [Google Scholar] [CrossRef]
- Eittreim, S.L.; Xu, J.; Noble, M.; Edwards, B.D. Towards a sediment budget for the Santa Cruz shelf. Mar. Geol. 2002, 181, 235–248. [Google Scholar] [CrossRef]
- Limber, P.W.; Patsch, K.B.; Griggs, G.B. Coastal Sediment Budgets and the Littoral Cutoff Diameter: A Grain Size Threshold for Quantifying Active Sediment Inputs. J. Coast. Res. 2008, 24, 122–133. [Google Scholar] [CrossRef]
- Thornton, E.B. Temporal and spatial variations in sand budgets with application to southern Monterey Bay, California. Mar. Geol. 2016, 382, 56–67. [Google Scholar] [CrossRef]
- Shetty, A.; Kankara, R.S.; Silamaban, D.; Subbiah, B.; Subburaj, S. Implication of shoreline and nearshore morphological changes on sediment budget of wave-dominated Chennai beach, India. Environ. Earth Sci. 2022, 81, 505. [Google Scholar] [CrossRef]
- Soomere, T.; Viška, M. Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea. J. Mar. Syst. 2014, 129, 96–105. [Google Scholar] [CrossRef]
- van Rijn, L.C. Sediment transport and budget of the central coastal zone of Holland. Coast. Eng. 1997, 32, 61–90. [Google Scholar] [CrossRef]
- Patsch, K.; Griggs, G. A sand budget for the Santa Barbara Littoral Cell, California. Mar. Geol. 2008, 252, 50–61. [Google Scholar] [CrossRef]
- Pomeroy, A.W.M.; Lowe, R.J.; Van Dongeren, A.R.; Ghisalberti, M.; Bodde, W.; Roelvink, D. Spectral wave-driven sediment transport across a fringing reef. Coast. Eng. 2015, 98, 78–94. [Google Scholar] [CrossRef]
- Ding, Y.; Styles, R.; Kim, S.C.; Permenter, R.L.; Frey, A.E. Cross-shore sediment transport for modeling long-term shoreline evolution. J. Waterw. Port Coast. Ocean Eng. 2021, 147, 04021014. [Google Scholar] [CrossRef]
- Broekema, Y.B.; Giardino, A.; van der Werf, J.J.; van Rooijen, A.A.; Vousdoukas, M.I.; van Prooijen, B.C. Observations and modelling of nearshore sediment sorting processes along a barred beach profile. Coast. Eng. 2016, 118, 50–62. [Google Scholar] [CrossRef]
- Grossmann, F.; Hurther, D.; van der Zanden, J.; Cáceres, I.; Sánchez-Arcilla, A.; Alsina, J.M. Near-bed sediment transport during offshore bar migration in large-scale experiments. J. Geophys. Res. Ocean. 2022, 127, e2021JC017756. [Google Scholar] [CrossRef]
- Montreuil, A.L.; Bullard, J.E. A 150-year record of coastline dynamics within a sediment cell: Eastern England. Geomorphology 2012, 179, 168–185. [Google Scholar] [CrossRef]
- Kana, T.W. A mesoscale sediment budget for Long Island, New York. Mar. Geol. 1995, 126, 87–110. [Google Scholar] [CrossRef]
- Sunamura, T.; Horikawa, K. Sediment budget in Kujukuri coastal area, Japan. ASCE 1977, 77, 4. [Google Scholar]
- Torii, K.; Sato, S.; Uda, T.; Okayasu, T. Regional sediment management based on sediment budget for graded sediments-A study case of Tenryu watershed and Enshu-Nada coast. In Proceedings of the Coastal Engineering Conference (ICCE2004), Lisbon, Portugal, 19–24 September 2004; pp. 3110–3122. [Google Scholar]
- Hiep, N.T.; Tanaka, H.; Tinh, N.X. Centennial to Multi-Decadal Morphology Change and Sediment Budget Alteration with Consideration of the Impacts of the 2011 Tohoku Earthquake Tsunami along the Nobiru Coast, Japan. J. Mar. Sci. Eng. 2021, 9, 265. [Google Scholar] [CrossRef]
- Tanaka, S.; Sato, S.; Kawagishi, S.; Ishikawa, T.; Yamamoto, Y.; Asano, G. Sand transport mechanism in Ishikawa Coast. Proc. Coast. Eng. JSCE 1997, 44, 661–665. (In Japanese) [Google Scholar]
- Tanaka, S.; Sato, S.; Kawagishi, S.; Ishikawa, T.; Yamamoto, Y. Sediment transport mechanism offshore of Ishikawa Coast. Proc. Coast. Eng. JSCE 1996, 44, 551–555. (In Japanese) [Google Scholar]
- Sato, S. Effects of winds and breaking waves on large-scale coastal currents developed by winter storms in Japan Sea. Coast. Eng. Jpn. 1996, 39, 129–144. [Google Scholar] [CrossRef]
- Yasuda, T.; Mori, N.; Kato, S.; Sato, S. Characteristics of offshore currents and effects of wave breaking on Ishikawa Coast. Proc. Coast. Eng. JSCE 1995, 45, 431–435. (In Japanese) [Google Scholar]
- Uda, T.; Kumada, T.; Serizawa, M. Large-scale circulation of littoral drift on coast with seasonal changes in wave direction and amplitude. J. Coast. Res. 2009, SI56, 143–147. [Google Scholar]
- Yuhi, M. Impact of anthropogenic modifications of a river basin on neighboring coasts: Case study. J. Waterw. Port Coast. Ocean. Eng. 2008, 134, 336–344. [Google Scholar] [CrossRef]
- Yuhi, M.; Dang, M.H.; Umeda, S. Comparison of accelerated erosion in riverbed and downstream coast by EOF analysis. J. Coast. Res. 2013, SI65, 618–623. [Google Scholar] [CrossRef]
- Wright, L.D.; Short, A.D. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Nishikawa, S.; Wakamatsu, T.; Ishizaki, H.; Sakamoto, K.; Tanaka, Y.; Tsujino, H.; Yamanaka, G.; Kamachi, M.; Ishikawa, Y. Development of high-resolution future ocean regional projection datasets for coastal applications in Japan. Prog. Earth Planet. Sci. 2021, 8, 7. [Google Scholar] [CrossRef]
- Umeda, S.; Ninomiya, J.; Arita, F.; Yuhi, M. Seasonal Variability of the Currents in the Offshore Region of Surf Zone and Effects of External Forcings on the Currents. J. Jpn. Soc. Civ. Eng. Ser. B2 (Coast. Eng.) 2021, 77, 355–360. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Yuhi, M. Long-term variation of wave characteristics on the Kaetsu coast, Japan. J. Jpn. Soc. Civ. Eng. Ser. B3 (Ocean. Eng.) 2015, 71, I_359–I_364. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.; Umeda, S.; Yuhi, M. Long-term riverbed response of lower Tedori River, Japan, to sediment extraction and dam construction. Environ. Earth Sci. 2014, 72, 2971–2983. [Google Scholar] [CrossRef]
- Umeda, S.; Arita, M.; Thunyaphun, T.; Do, Q.; Yuhi, M. Spatial distribution of grain-size of surface sediments and morphologi- cal change in Ishikawa Coast. J. JSCE (B2: Coast. Eng.) 2022, 78, 583–588. (In Japanese) [Google Scholar]
- Kamphuis, J.W. Alongshore sediment transport rate. J. Waterw. Port Coast. Ocean. Eng. 1991, 117, 624–640. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Shore Protection Manual; Coastal Engineering Research Center, U.S. Government Printing Office: Washington, DC, USA, 1984.
- Soulsby, R. Dynamics of Marine Sands; Thomas Telford Publishing: London, UK, 1997. [Google Scholar]
- Zyserman, J.A.; Fredsøe, J. Data analysis of bed concentration of suspended sediment. J. Hydraul. Eng. 1994, 120, 1021–1042. [Google Scholar] [CrossRef]
- Soulsby, R.; Whitehouse, R. Threshold of sediment motion in coastal environments. In Pacific Coasts and Ports’ 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference; Centre for Advanced Engineering, University of Canterbury: Christchurch, NZ, USA, 1997; Volume 1, pp. 149–154. [Google Scholar]
- Dang, M.; Umeda, S.; Yuhi, M. Human impact on morphology and sediment budget in the Tedori River, Japan. Adv. River Sediment Res. 2013, 9, 289–297. [Google Scholar]
- Tsujimoto, T.; Teramoto, A. Transitional change in vegetation and bar-morphology comparison between gravel-bed river and sandy river. J. Hydro-Environ. Res. 2004, 30, 1–9. [Google Scholar]
- Dang, M.H.; Umeda, S.; Yuhi, M. Morphological Changes of the Lower Tedori River, Japan, over 50 Years. Water 2019, 11, 1852. [Google Scholar]
- Kuang, C.; Han, X.; Zhang, J.; Zou, Q.; Dong, B. Morphodynamic evolution of a nourished beach with artificial sandbars: Field observations and numerical modeling. J. Mar. Sci. Eng. 2021, 9, 245. [Google Scholar] [CrossRef]
- van Rijn, L.C.; Grasmeijer, B.; Ruessink, B. Measurement errors of instruments for velocity, wave height, sand concentration and bed levels in field conditions. In Coast 3D Report for Rijkswaterstaat RIKZ; Deltares (WL)—Utrecht University: Delft, The Netherlands, 2000; pp. 1–47. [Google Scholar]
- Saitoh, T.; Matsubara, T. Disaster occurrence prediction for coastal structures using characteristics of wave history. J. Jpn. Soc. Civ. Eng. Ser. B2 (Coast. Eng.) 2014, 70, 1026–1030. (In Japanese) [Google Scholar]
- INA, C.I. Sediment dynamics analysis of Kaetsu Coast. In Report for Kanazawa Office of Rivers and National Highways; HRDB: Niigata, Japan, 2006; p. 205. (In Japanese) [Google Scholar]
- Jinda, T.; Hoshino, Y.; Uda, T.; Ishikawa, T.; Sannami, T.; Hanada, M. Analysis of beach changes after gravel nourishment on Katayamazu coast. J. Jpn. Soc. Civ. Eng. Ser. B2 (Coast. Eng.) 2018, 74, 895–900. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
- Uchibori, S.; Fujita, K.; Fukuda, T.; Jinbo, M.; Sawaki, S.; Hara, F. Basic studies to develop artificial beach nourishment suitable to natural sediment transport in the Katayamazu area of the Ishikawa Coast. J. Jpn. Soc. Civ. Eng. Ser. B2 (Coast. Eng.) 2016, 72, 841–846. (In Japanese) [Google Scholar]
- Ohmura, M.; Sato, S. Long-term sediment transport in Kuzuryu river and Kaetsu coast under Holocene sea level variation. Coast. Eng. Proc. 2014, 1, 57. [Google Scholar] [CrossRef]
- Yuhi, M.; Watanabe, M.; Yoshizaki, H.; Matsuyama, M.; Kurosaki, H. Spatio-Temporal shoreline variability on the Uchinada coast, Ishikawa, Japan. J. Jpn. Soc. Civ. Eng. Ser. B3 (Ocean. Eng.) 2014, 70, 672–677. (In Japanese) [Google Scholar]
- Mizumura, K.; Yamamoto, T.; Fujikawa, T. Prediction of Sand Movement near Port of Kanazawa. J. Waterw. Port Coast. Ocean. Eng. 1997, 123, 215–222. [Google Scholar] [CrossRef]
- Yuhi, M.; Matsuyama, M.; Hayakawa, K. Sandbar Migration and Shoreline Change on the Chirihama Coast, Japan. J. Mar. Sci. Eng. 2016, 4, 40. [Google Scholar] [CrossRef]
- Umeda, S.; Yuhi, M.; Karunarathna, H. Seasonal to Decadal Variability of Shoreline Position on a Multiple Sandbar Beach. J. Coast. Res. 2018, SI85, 261–265. [Google Scholar] [CrossRef]
Sediment Volume Trend per Unit Alongshore Length in Each Area (103 m3/km/Year) | ||||
---|---|---|---|---|
Cells | Longshore Distance (km) | Period 1 | Period 2 | Period 3 |
All area | 19.1 | −39.7 | −20.9 | −3.21 |
Surf zone | 19.1 | −22.8 | −9.56 | 3.1 |
Offshore | 19.1 | −16.9 | −20.9 | −6.31 |
S1 | 5.7 | −8.48 | −10.4 | 0.717 |
S2 | 2.7 | −44.5 | −18.2 | 15.69 |
S3 | 2.7 | −67.5 | −0.512 | 3.34 |
S4 | 8.0 | −10.7 | −9.10 | 0.47 |
O1 | 5.7 | −17.9 | −9.96 | −9.24 |
O2 | 2.7 | −20.9 | −4.77 | −9.59 |
O3 | 2.7 | −38.9 | −18.3 | −6.07 |
O4 | 8.0 | −7.34 | −35.0 | −3.20 |
Term | Qcr(m3) | All Area | |||||||
---|---|---|---|---|---|---|---|---|---|
19 years * | 0 | 0.435 | |||||||
19 years * | 30 | 0.439 | |||||||
13 years ** | 30 | 0.641 | |||||||
Surf zone | Offshore zone | ||||||||
19 years * | 0 | 0.504 | 0.306 | ||||||
19 years * | 30 | 0.519 | 0.299 | ||||||
13 years ** | 30 | 0.783 | 0.431 | ||||||
S1 | S2 | S3 | S4 | O1 | O2 | O3 | O4 | ||
19 years * | 0 | 0.462 | 0.583 | 0.343 | 0.409 | 0.326 | 0.367 | 0.362 | 0.178 |
19 years * | 30 | 0.475 | 0.475 | 0.353 | 0.418 | 0.31 | 0.402 | 0.392 | 0.155 |
13 years ** | 30 | 0.878 | 0.878 | 0.468 | 0.649 | 0.417 | 0.443 | 0.476 | 0.345 |
Cases | Conditions |
---|---|
BC | base condition, particle diameter d50 = 0.3 mm (surf zone), 0.22 (offshore zone left end), |
0.18 (offshore zone right end), cross-shore slope 1/100, shoreline angle 40° (left end), | |
37° (right end) with 10 × 104 m3/year of rate of sediment from river | |
(80% for Cell S1–S4, 20% for Cell O1–O4) river sediment fraction = 16%, 24%, 24%, 16% | |
(for surf zone) and = 0%, 10%, 10%, 0% (for offshore zone) respectively | |
R1 | river sediment fraction changed to (20%, 30%, 30%, 0% for surf zone cells) |
R2 | river sediment fraction changed to uniform pattern for all cells (12.5% each) |
R3 | no river sediment fraction to offshore zone cells (20%, 30%, 30%, 20% for surf zone cells) |
R4 | 4.0 × 104 m3/year of rate of sediment from river with base computation properties |
R5 | 4.0 × 104 m3/year of rate of sediment from river with river sediment fraction of case R1 |
R6 | 4.0 × 104 m3/year of rate of sediment from river with river sediment fraction of case R2 |
R7 | 4.0 × 104 m3/year of rate of sediment from river with no river sediment fraction of case R3 |
R8 | 19.2 × 104 m3/year of rate of sediment from river with base computation properties |
R9 | 19.2 × 104 m3/year of rate of sediment from river with river sediment fraction of case R1 |
R10 | 19.2 × 104 m3/year of rate of sediment from river with river sediment fraction of case R2 |
R11 | 19.2 × 104 m3/year of rate of sediment from river with no river sediment fraction of case R3 |
C1 | surf zone particle diameter d50 = 0.2 mm for Kamphius formula |
C2 | surf zone particle diameter d50 = 0.5 mm for Kamphius formula |
C3 | cross-shore slope 1/80 |
C4 | cross-shore slope 1/120 |
C5 | shoreline angle 38° (right end) |
C6 | shoreline angle 39° (left end) |
C7 | shoreline angle 39° (left end) coastal angle 38° (right end) |
C8 | using CERC formula (K = 0.41) for surf zone sediment transport calculation |
C9 | offshore zone particle diameter d50 = 0.4 mm (left end), 0.2 mm (right end) |
C10 | offshore zone particle diameter d50 = 0.2 mm |
Coastal Region | Katayamazu & Komatsu Coasts | Ishikawa Coast | Kanazawa Coast | Kanazawa Port & Surrounding Coasts | |||||
---|---|---|---|---|---|---|---|---|---|
Local Name | Katayamazu | Komatsu | Neagari | Mikawa | Matto | Kanazawa | Kanaiwa | Kanazawa Port | Uchinada |
Longshore distance (km) | 5.3 | 5.8 | 5.7 | 5.4 | 8.0 | 5.8 | 2.4 | 2.3 | 1.9 |
trend in offshore zone (m3/km/year) | 0 | −3500 | −9240 | −7830 | −3200 | - | 16,300 | 9100 | 18,900 |
trend in surf zone (m3/km/year) | 0 | −900 | 720 | 9520 | 470 | −4300 | 12,500 | 16,000 | 5300 |
Duration of survey data used for estimation | 2001–2012 | 1994–2004 | 1996–2017 (trend analysis) | 1990–2002 | 1989–1994 | 1991–2003 | 1991–2003 | ||
Literature | Uchibori et al. (2016) [51] | INA (2006) [49] | Present study | INA (2006) [49] | |||||
river | Shinbori | Kakehashi | - | Tedori | - | - | Sai | - | - |
sandbar | no | single | double | double | double | single/double | no | no | double |
nearshore slope | 1/50–1/80 | 1/80 | 1/90 | 1/100 | 1/100 | 1/110 | - | - | 1/130 |
north-based azimuth of shoreline (degree) | 54–68 | 44–47 | 36–40 | 35–42 | 37–38 | 37 | - | - | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thunyaphun, T.; Umeda, S.; Yuhi, M. Sediment Budget and Net Sediment Transport on a Coast Dominated by Waves and Offshore Currents: A Case Study on the Ishikawa Coast and Its Surrounding Areas in Japan. J. Mar. Sci. Eng. 2023, 11, 621. https://doi.org/10.3390/jmse11030621
Thunyaphun T, Umeda S, Yuhi M. Sediment Budget and Net Sediment Transport on a Coast Dominated by Waves and Offshore Currents: A Case Study on the Ishikawa Coast and Its Surrounding Areas in Japan. Journal of Marine Science and Engineering. 2023; 11(3):621. https://doi.org/10.3390/jmse11030621
Chicago/Turabian StyleThunyaphun, Tussanun, Shinya Umeda, and Masatoshi Yuhi. 2023. "Sediment Budget and Net Sediment Transport on a Coast Dominated by Waves and Offshore Currents: A Case Study on the Ishikawa Coast and Its Surrounding Areas in Japan" Journal of Marine Science and Engineering 11, no. 3: 621. https://doi.org/10.3390/jmse11030621
APA StyleThunyaphun, T., Umeda, S., & Yuhi, M. (2023). Sediment Budget and Net Sediment Transport on a Coast Dominated by Waves and Offshore Currents: A Case Study on the Ishikawa Coast and Its Surrounding Areas in Japan. Journal of Marine Science and Engineering, 11(3), 621. https://doi.org/10.3390/jmse11030621