Assessment of Shipping Emissions on Busan Port of South Korea
Abstract
:1. Introduction
2. Methods and Data
2.1. Study Area and Scope
2.2. Calculation Method
2.3. Data Requirements and Data Sources
2.3.1. Collection and Classification of Ships Entering and Departing Busan Port
2.3.2. Engine Power and Load Factors
2.3.3. Duration of Maneuvering Activities in Busan Port
2.3.4. Engine Fuel Type Profiles, Fuel Consumptions, and Emission Factors
3. Results
3.1. Correlation Analysis Results for Main Engine Output
3.2. Correlation Analysis Results for Auxiliary Engine Output
3.3. Estimated Fuel Consumption Calculations of Ships Entering Busan Port in 2020
3.4. Calculation Result of Air Pollutant Emissions from Ships Entering Busan Port in 2020
4. Discussion
4.1. Unification of Ship Use Classification
4.2. Correlation for Outputs of Main and Auxiliary Engines
4.3. Calculation of Air Pollutant Emissions
4.4. Development of Sustainable Strategies for the Port
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CO2 | Carbon Dioxide |
CO | Carbon Monoxide |
CAPSS | Clean Air Policy Support System |
DCS | Data Collection System |
D/E | Dynamo engine |
FOC | Fuel Oil Consumption |
GHG | Greenhouse gas |
GT | Gross Tonnage |
HFO | Heavy Fuel Oil |
IMO | International Maritime Organization |
LNG | Liquefied Natural Gas |
LPG | Liquefied Petroleum Gas |
MDO | Marine Diesel Oil |
M/E | Main engine |
NOX | Nitric Oxide |
PM | Particulate Matter |
RORO | Roll-on/Roll-off cargo |
SFOC | Specific Fuel Oil Consumption |
SOX | Sulfur Oxides |
VOC | Volatile Organic Compounds |
References
- Li, C.; Borken-Kleefeld, J.; Zheng, J.; Yuan, Z.; Ou, J.; Li, Y.; Wang, Y.; Xu, Y. Decadal evolution of ship emissions in China from 2004 to 2013 by using an integrated AIS-based approach and projection to 2040. Atmos Chem Phys. 2018, 18, 6075–6093. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, A.; Russo, M.; Gama, C.; Borrego, C. How important are maritime emissions for the air quality: At European and national scale. Environ. Pollut. 2018, 242, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Murena, F.; Mocerino, L.; Quaranta, F.; Toscano, D. Impact on air quality of cruise ship emissions in Naples, Italy. Atmos. Environ. 2018, 187, 70–83. [Google Scholar] [CrossRef]
- Fameli, K.M.; Kotrikla, A.M.; Psanis, C.; Biskos, G.; Polydoropoulou, A. Estimation of the emissions by transport in two port cities of the northeastern Mediterranean, Greece. Environ. Pollut. 2020, 257, 113598. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Assessment of shipping emissions on four ports of Portugal. Environ. Pollut. 2017, 231, 1370–1379. [Google Scholar] [CrossRef]
- Tang, L.; Ramacher, M.O.P.; Moldanová, J.; Matthias, V.; Karl, M.; Johansson, L.; Jalkanen, J.P.; Yaramenka, K.; Aulinger, A.; Gustafsson, M. The impact of ship emissions on air quality and human health in the Gothenburg area—Part 1: 2012 emissions. Atmos. Chem. Phys. 2020, 20, 7509–7530. [Google Scholar] [CrossRef]
- Perčić, M.; Ančić, I.; Vladimir, N. Life-cycle cost assessments of different power system configurations to reduce the carbon footprint in the Croatian short-sea shipping sector. Renew. Sustain. Energy Rev. 2020, 131, 110028. [Google Scholar] [CrossRef]
- Perčić, M.; Vladimir, N.; Jovanović, I.; Koričan, M. Application of fuel cells with zero-carbon fuels in short-sea shipping. Appl. Energy 2022, 309, 118463. [Google Scholar] [CrossRef]
- Campisi, T.; Marinello, S.; Costantini, G.; Laghi, L.; Mascia, S.; Matteucci, F.; Serrau, D. Locally integrated partnership as a tool to implement a Smart Port Management Strategy: The case of the port of Ravenna (Italy). Ocean Coast. Manag. 2022, 224, 106179. [Google Scholar] [CrossRef]
- International Maritime Organization (IMO). Fourth Greenhouse Gas Study; International Maritime Organization (IMO): London, UK, 2020. [Google Scholar]
- Cammin, P.; Yu, J.; Heilig, L.; Voß, S. Monitoring of air emissions in maritime ports. Transp. Res. Part D 2020, 87, 102479. [Google Scholar] [CrossRef]
- Nguyen, P.N.; Woo, S.H.; Kim, H. Ship emissions in hotelling phase and loading/unloading in Southeast Asia ports. Transp. Res. Part D 2022, 105, 103223. [Google Scholar] [CrossRef]
- Chang, Y.T.; Song, Y.; Roh, Y. Assessing greenhouse gas emissions from port vessel operations at the Port of Incheon. Transp. Res. Part D 2013, 25, 1–4. [Google Scholar] [CrossRef]
- Clean Air Policy Support System. National Air Emission Inventory and Research. 2019. Available online: http://www.air.go.kr/capss/emission/sido.do?menuld=31 (accessed on 22 October 2022).
- Yu, H.; Fang, Z.; Fu, X.; Liu, J.; Chen, J. Literature review on emission control-based ship voyage optimization. Transp. Res. Part D 2021, 93, 102768. [Google Scholar] [CrossRef]
- Perčić, M.; Vladimir, N.; Fan, A.; Jovanović, I. Holistic Energy Efficiency and Environmental Friendliness Model for Short-Sea Vessels with Alternative Power Systems Considering Realistic Fuel Pathways and Workloads. J. Mar. Sci. Eng. 2022, 10, 613. [Google Scholar] [CrossRef]
- Korea Maritime Institute (KMI). Improvements in the Estimation of Air Pollutant Emissions from Ships; Korea Maritime Institute (KMI): Busan, Republic of Korea, 2017. [Google Scholar]
- Chen, S.; Meng, Q.; Jia, P.; Kuang, H. An operational-mode-based method for estimating ship emissions in port waters. Transp. Res. Part D 2021, 101, 103080. [Google Scholar] [CrossRef]
- Gan, L.; Che, W.; Zhou, M.; Zhou, C.; Zheng, Y.; Zhang, L.; Rangel-Buitrago, N.; Song, L. Ship exhaust emission estimation and analysis using Automatic Identification System data: The west area of Shenzhen port, China, as a case study. Ocean Coast Manag. 2022, 226, 106245. [Google Scholar] [CrossRef]
- Marinello, S.; Gamberini, R. Multi-Criteria Decision Making Approaches Applied to Waste Electrical and Electronic Equipment (WEEE): A Comprehensive Literature Review. Toxics 2021, 9, 13. [Google Scholar] [CrossRef]
- Busan Harbor Pilot’s Association. Available online: https://www.busanpiolt.co.kr/harbor/busan (accessed on 22 October 2022).
- European Environment Agency (EEA). EMEP/EEA Air Pollutant Emission Inventory Guidebook; European Environment Agency (EEA): Copenhagen, Denmark, 2019; Volume 22. [Google Scholar]
- Weng, J.; Shi, K.; Gan, X.; Li, G.; Huang, Z. Ship emission estimation with high spatial-temporal resolution in the Yangtze River estuary using AIS data. J. Clean. Prod. 2020, 248, 119297. [Google Scholar] [CrossRef]
- Toscano, D.; Murena, F. Atmospheric ship emissions in ports: A review. Correlation with data of ship traffic. Atmos. Environ. X 2019, 4, 100050. [Google Scholar] [CrossRef]
- Entec, U.K. Limited. Quantification of Emissions from Ships Associated with Ship Movements Between Ports in the European Community; Final Report; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Vessel Finder. Available online: https://www.vesselfinder.com (accessed on 22 September 2022).
- Entec, U.K. Ship Emissions Inventory—Mediterranean Sea; Final Report for Concawe; Entec UK Limited: Brussels, Belgium, 2007. [Google Scholar]
- Ančić, I.; Perčić, M.; Vladimir, N. Alternative power options to reduce carbon footprint of ro-ro passenger fleet: A case study of Croatia. J. Clean. Prod. 2020, 271, 122638. [Google Scholar] [CrossRef]
- Fan, A.; Yang, J.; Yang, L.; Wu, D.; Vladimir, N. A review of ship fuel consumption models. Ocean Eng. 2022, 264, 112405. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2006; Volume 2. [Google Scholar]
- Koričan, M.; Perčić, M.; Vladimir, N.; Alujević, N.; Fan, A. Alternative Power Options for Improvement of the Environmental Friendliness of Fishing Trawlers. J. Mar. Sci. Eng. 2022, 10, 1882. [Google Scholar] [CrossRef]
- Trozzi, C. Update of Emission Estimate Methodology for Maritime Navigation; Techne Consulting Report; Techne Consulting: Roma, Italy, 2010. [Google Scholar]
- Song, S. Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmos. Environ. 2014, 82, 288–297. [Google Scholar] [CrossRef]
Category | AIS | VTS | PORT-MIS |
---|---|---|---|
Information of Collected ships | 300 t ≤ Ocean-going vessels 500 t ≤ Coastal vessels | All ships | 5 t ≤ All ships |
Range | Base station 50 miles Wide range observation | Control areas: coast and harbor Limited range | Harbor limit areas (Ships and anchorage) |
Sailing information | Location (coordinates, time, speed, and direction) | Operating time to control area Entry and departure times | Entry and departure times |
Data compatibility | Compatible | Incompatible | Compatible |
Excluding Data | Quantity | Remark |
---|---|---|
Working (construction) barge (1) | 1 | Engine absent |
Another barge | 7 | Engine absent |
Power-driven water leisure craft | 4 | Engine absent |
Hoteling over than 30 days (720 h) over 10 days (240 h): 2566 over 90 days (2160 h): 191 | 745 | |
Hoteling less than 5 min | 462 | |
Error data | 3 | Missing data |
Unavailable data (sub. total) | 1222 | |
Available data Raw data (45,537) unavailable data (1222) | 44,315 | 20,656 (Domestic) |
23,659 (International) | ||
5983 vessels |
Activity of Ship | Ratio of Load | |
---|---|---|
Main Engines | Auxiliary Engines | |
Cruising | 80% | 30% |
Maneuvering | 20% | 50% |
Hoteling | 0% | 40% |
Hoteling (tankers-using pumps) | 0% | 60% |
Fuel Type | Maneuvering M/E (g Fuel/kWh) | M, H, C Auxiliary Engine (g Fuel/kWh) |
---|---|---|
MDO | 204 | 217 |
HFO | 215 | 204 |
Remark | slow-speed diesel | high-speed diesel |
Pollutant | IMO (2018) | European Environment Agency (2019) | IPCC (2006) | |
---|---|---|---|---|
CO2 | Gasoline | - | - | 2967 |
MDO | 3206 | - | 3143 | |
BFO | 3114 | - | 3190 | |
CH4 | 0.05 | - | 0.05 | |
N2O | 0.18 | - | 0.08 | |
SOx | MDO | 1.37 | - | - |
BFO | 50.83 | - | ||
CO | 2.59 | - | - | |
NOx | MDO | 56.71 | (40.1) (M., H., H.S.) (62.1) (M., H., S.S.) | - |
BFO | 75.90 | 40.6 (M., H., H.S.) 62.9 (M., H., S.S.) | - | |
NM VOC | MDO | 2.4 | 2.6 (M., H., H.S.) 8.6 (M., H., S.S.) | - |
BFO | 3.20 | 2.5 (M., H., H.S.) 8.2 (M., H., S.S.) | - | |
PMw | MDO | 0.90(10) 0.83(2.5) | 4.0 (M., H., H.S.) 4.4 (M., H., S.S.) | - |
BFO | 7.55(10) 6.94(2.5) | 10.3 (M., H., H.S.) 11.2 (M., H., S.S.) | - |
Category | Ship (Quantity) | Main Engine Power (kW) | Adj. R2 |
---|---|---|---|
General cargo | 865 | 0.9449 | |
Chemical carrier | 351 | 0.9566 | |
LPG carrier | 72 | 0.9912 | |
Oil tanker | 138 | 0.9769 | |
Oil products carrier | 594 | 0.9842 | |
Total | 2020 |
Consumption | NOx | SOx | CO2 | CO | PM2.5 | PM10 | NMVOC | ||
---|---|---|---|---|---|---|---|---|---|
Emission Factor | Dome. | MDO | 56.7 | 1.37 | 3206 | 2.59 | 0.83 | 0.9 | 2.4 |
Inter. | HFO | 75.9 | 80.83 | 3114 | 2.88 | 6.94 | 7.55 | 3.2 | |
Hoteling | Dome. | 40,168 | 2277.5 | 55.0 | 128,781.2 | 104.0 | 33.3 | 36.1 | 96.4 |
Inter. | 182,861 | 13,879.1 | 14,780.6 | 569,429.3 | 526.6 | 1269.0 | 1380.6 | 5851.5 | |
Sub. | 223,029 | 16,156.7 | 14,835.6 | 69,8210.6 | 630.6 | 1302.3 | 1416.7 | 681.5 | |
Maneuvering M/E | Dome. | 1535 | 87.0 | 2.1 | 4923.9 | 3.9 | 1.2 | 1.3 | 3.6 |
Inter. | 11,464 | 870.1 | 926.6 | 35,699.2 | 33.0 | 79.5 | 86.5 | 36.6 | |
Sub. | 12,999 | 957.2 | 928.7 | 40,623.2 | 36.9 | 80.8 | 87.9 | 40.3 | |
Maneuvering M/E | Dome. | 2175 | 123.3 | 2.9 | 6976.2 | 5.6 | 1.8 | 1.9 | 5.2 |
Inter. | 14,313 | 1086.4 | 1156.9 | 44,573.2 | 41.2 | 99.3 | 108.0 | 45.8 | |
Sub. | 16,488 | 1209.7 | 1159.9 | 51,549.4 | 46.8 | 101.1 | 110.0 | 51.0 | |
Total | 252,519 | 18,323.7 | 16,924.4 | 790,383.3 | 714.5 | 1484.3 | 1614.7 | 772.9 |
Category | 2020 RO Data | 2010 World Fleet | 1997 World Fleet |
---|---|---|---|
General Cargo | |||
Dry Bulk carriers | |||
Container | |||
Chemical (Liquid) carrier | |||
Oil products carrier | - | - | |
Oil tanker | - | - | |
LPG carrier | - | - | |
Other |
Ship Category | Yard (2020) | 2010 World Fleet | Mediterranean Sea Fleet (2006) |
---|---|---|---|
Liquid bulk Ships | - | 0.30 | 0.35 |
Dry Bulk carriers | 0.19 | 0.30 | 0.39 |
Container | 0.23 | 0.25 | 0.27 |
General Cargo | 0.19 | 0.23 | 0.35 |
Ro Ro Cargo | 0.29 | 0.24 | 0.39 |
Passenger | 0.45 | 0.16 | 0.27 |
Fishing | - | 0.39 | 0.47 |
Other | - | 0.35 | 0.18 |
Tugs | - | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, J.-W.; Yeo, S.; Lee, W.-J. Assessment of Shipping Emissions on Busan Port of South Korea. J. Mar. Sci. Eng. 2023, 11, 716. https://doi.org/10.3390/jmse11040716
Kwon J-W, Yeo S, Lee W-J. Assessment of Shipping Emissions on Busan Port of South Korea. Journal of Marine Science and Engineering. 2023; 11(4):716. https://doi.org/10.3390/jmse11040716
Chicago/Turabian StyleKwon, Jin-Woo, Siljung Yeo, and Won-Ju Lee. 2023. "Assessment of Shipping Emissions on Busan Port of South Korea" Journal of Marine Science and Engineering 11, no. 4: 716. https://doi.org/10.3390/jmse11040716
APA StyleKwon, J.-W., Yeo, S., & Lee, W.-J. (2023). Assessment of Shipping Emissions on Busan Port of South Korea. Journal of Marine Science and Engineering, 11(4), 716. https://doi.org/10.3390/jmse11040716