Reliable Liner Shipping Hub Location Problem Considering Hub Failure
Abstract
:1. Introduction
2. Literature Review
3. Notations and Assumptions
3.1. Community, Container Routing and Transportation Cost
3.2. Hub Failure
4. Global Shipping Network Division and Hub Port Location
4.1. Global Shipping Network Division
- Step 1:
- Set the initial values of vectors , and parameter .
- Step 2:
- Randomly select ports from and form initial centroid vectors , where equals the vector () associated with the ith port selected.
- Step 3:
- Repeat the following three steps to divide the community.
- Substep 3.1:
- According to , port i is assigned to the nearest community. Update set .
- Substep 3.2:
- Recalculate the vector according to .
- Substep 3.3:
- If have not changed, go to Step 4, otherwise repeat Step 3.
- Step 4:
- Output communities .
4.2. Reliable Hub Port Location within the Community
4.2.1. Reliable Single Allocation Model
4.2.2. Reliable Multiple Allocation Model
5. Benders Decomposition for the Global RLSHLP
Algorithm 1: Classical Benders Algorithm |
, , while () do Solve the MP (78)–(82) to obtain and Update , Solve the SP (64)–(76) to obtain Add a new Benders cut constraint (77) in the MP (78)–(82) if () then end if end while |
Algorithm 2: Modified Benders Algorithm |
, , terminate←false while (terminate = false) do Solve the MP (85)–(88) if (solution is infeasible) then terminate←ture else Obtain Update Solve the SP (64)–(76) to obtain Add a new Benders cut constraint (84) in MP (85)–(88) Update end if end while |
6. Numerical Experiments
6.1. Computational Results of Different Methods
6.2. Hub Location Results
6.2.1. Single Allocation
6.2.2. Multiple Allocation
6.3. Impact of Hub Failure
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- An, Y.; Zhang, Y.; Zeng, B. The reliable hub-and-spoke design problem: Models and algorithms. Transp. Res. Part B 2015, 77, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Bratu, S.; Barnhart, C. Flight operations recovery: New approaches considering passenger recovery. J. Sched. 2006, 9, 279–298. [Google Scholar] [CrossRef]
- Zeng, B.; An, Y.; Zhang, Y.; Kim, H. A reliable hub-spoke model in transportation systems. In Proceedings of the 4th International Symposium on Transportation Network Reliability (INSTR) Conference Proceedings, Minneapolis, MN, USA, 26 July 2010. [Google Scholar]
- Kim, H. P-Hub protection models for survivable hub network design. J. Geogr. Syst. 2012, 14, 437–461. [Google Scholar] [CrossRef]
- Azizi, N.; Chauhan, S.; Salhi, S.; Vidyarthi, N. The impact of hub failure in hub-and-spoke networks: Mathematical formulations and solution techniques. Comput. Oper. Res. 2016, 65, 174–188. [Google Scholar] [CrossRef]
- Tran, T.H.; O’Hanley, J.R.; Scaparra, M.P. Reliable hub network design: Formulation and solution techniques. Transp. Sci. 2017, 51, 358–375. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Jula, P.; Tavakkoli-Moghaddam, R. Reliable single-allocation hub location problem with disruptions. Transp. Res. Part E 2019, 123, 90–120. [Google Scholar] [CrossRef]
- Korani, E.; Eydi, A. Bi-level programming model and KKT penalty function solution approach for reliable hub location problem. Expert Syst. Appl. 2021, 184, 115505. [Google Scholar] [CrossRef]
- Azizi, N.; Salhi, S. Reliable hub-and-spoke systems with multiple capacity levels and flow dependent discount factor. Eur. J. Oper. Res. 2021, 298, 834–854. [Google Scholar] [CrossRef]
- Mohammadi, M.; Tavakkoli-Moghaddam, R.; Siadat, A.; Dantan, J.Y. Design of a reliable logistics network with hub disruption under uncertainty. Appl. Math. Model. 2016, 40, 5621–5642. [Google Scholar] [CrossRef] [Green Version]
- Rostami, B.; Kämmerling, N.; Buchheim, C.; Clausen, U. Reliable single allocation hub location problem under hub breakdowns. Comput. Oper. Res. 2018, 96, 15–29. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, S.; Andersson, H.; Thun, K. Containership routing and scheduling in liner shipping: Overview and future research directions. Transp. Sci. 2014, 48, 265–280. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Qi, J.; Sun, Z.; Li, F. Community structure based global hub location problem in liner shipping. Transp. Res. Part E 2018, 118, 1–19. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, L.; Ni, L.; Fagerholt, K.; Zhang, Y. Efficient models for the liner shipping hub location problem with spatial structure. Comput. Ind. Eng. 2022, 173, 108725. [Google Scholar] [CrossRef]
- Corey, J.; Wang, Q.; Zheng, J.; Sun, Y.; Du, H.; Zhu, Z. Container transshipment via a regional hub port: A case of the Caribbean Sea region. Ocean Coast. Manag. 2022, 217, 105999. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Yuen, K.F. Holistic risk assessment of container shipping service based on Bayesian Network Modelling. Reliab. Eng. Syst. Saf. 2022, 220, 108305. [Google Scholar] [CrossRef]
- Huang, L.L.; Tan, Y.; Guan, X. Hub-and-spoke network design for container shipping considering disruption and congestion in the post COVID-19 era. Ocean Coast. Manag. 2022, 225, 106230. [Google Scholar] [CrossRef]
- Kim, H.; O’Kelly, M.E. Reliable p-hub location problems in telecommunication networks. Geogr. Anal. 2009, 41, 283–306. [Google Scholar] [CrossRef]
- Davari, S.; Zarandi, M.H.F.; Turksen, I.B. The fuzzy reliable hub location problem. IEEE Fuzzy Inf. Process. Soc. 2010, 8, 1–6. [Google Scholar]
- Zarandi, M.H.F.; Davari, S.; Sisakht, A.H. Design of a reliable hub-and-spoke network using an interactive fuzzy goal programming. IEEE Int. Conf. Fuzzy Syst. 2011, 6, 2955–2959. [Google Scholar]
- Parvaresh, F.; Hashemi Golpayegany, S.A.; Moattar Husseini, S.M.; Karimi, B. Solving the p-hub median problem under intentional disruptions using simulated annealing. Netw. Spat. Econ. 2013, 13, 445–470. [Google Scholar] [CrossRef]
- Parvaresh, F.; Husseini, S.M.; Golpayegany, S.H.; Karimi, B. Hub network design problem in the presence of disruptions. J. Intell. Manuf. 2014, 25, 755–774. [Google Scholar] [CrossRef]
- Sambracos, E.; Paravantis, J.A.; Tarantilis, C.D.; Kiranoudis, C.T. Dispatching of small containers via coastal freight liners: The case of the Aegean Sea. Eur. J. Oper. Res. 2004, 152, 365–381. [Google Scholar] [CrossRef]
- Fagerholt, K. Designing optimal routes in a liner shipping problem. Marit. Policy Manag. 2004, 31, 259–268. [Google Scholar] [CrossRef]
- Karlaftis, M.G.; Kepaptsoglou, K.; Sambracos, E. Containership routing with time deadlines and simultaneous deliveries and pick-ups. Transp. Res. Part E 2009, 45, 210–221. [Google Scholar] [CrossRef]
- Imai, A.; Shintani, K.; Papadimitriou, S. Multi-port vs. Hub-and-Spoke port calls by containerships. Transp. Res. Part E 2009, 45, 740–757. [Google Scholar] [CrossRef] [Green Version]
- Gelareh, S.; Pisinger, D. Fleet deployment, network design and hub location of liner shipping companies. Transp. Res. Part E 2011, 47, 947–964. [Google Scholar] [CrossRef]
- Gelareh, S.; Nickel, S.; Pisinger, D. Liner shipping hub network design in a competitive environment. Transp. Res. Part E 2010, 46, 991–1004. [Google Scholar] [CrossRef] [Green Version]
- Gelareh, S.; Maculan, N.; Mahey, P.; Monemi, R.N. Hub-and-spoke network design and fleet deployment for string planning of liner shipping. Appl. Math. Model. 2013, 37, 3307–3321. [Google Scholar] [CrossRef]
- Zheng, J.; Meng, Q.; Sun, Z. Impact analysis of maritime cabotage legislations on liner hub-and-spoke shipping network design. Eur. J. Oper. Res. 2014, 234, 874–884. [Google Scholar] [CrossRef]
- Zheng, J.; Meng, Q.; Sun, Z. Liner hub-and-spoke shipping network design. Transp. Res. Part E 2015, 75, 32–48. [Google Scholar] [CrossRef]
- Bolstad, H.M.; Benjamin, M.C.A.; Kjetil, F.; Peter, S. Shortsea liner network design with transshipments at sea: A case study from Western Norway. Flex. Serv. Manuf. J. 2019, 31, 598–619. [Google Scholar]
- Chen, K.; Xu, S.; Haralambides, H. Determining hub port locations and feeder network designs: The case of China-West Africa trade. Transp. Policy 2020, 86, 9–22. [Google Scholar] [CrossRef]
- Bütün, C.; Petrovic, S.; Muyldermans, L. The capacitated directed cycle hub location and routing problem under congestion. Eur. J. Oper. Res. 2020, 292, 714–734. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, J. Finding potential hub locations for liner shipping. Transp. Res. Part B 2016, 93, 750–761. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, W.; Qi, J.; Wang, S. Canal effects on a liner hub location problem. Transp. Res. Part E 2019, 130, 230–247. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zheng, J.; Hu, H. Finding community structure in spatial maritime shipping networks. Int. J. Mod. Phys. C 2012, 23, 1250044. [Google Scholar] [CrossRef]
- Frequent Strikes in European Ports Affect the Normal Operation of the Supply Chain. Available online: https://baijiahao.baidu.com/s?id=1742489489064094817&wfr=spider&for=pc (accessed on 15 March 2023).
- MacQueen, J. Some methods for classification and analysis of multivariate observations. Proc. Berkeley Symp. Math. Stat. Probab. 1967, 14, 281–297. [Google Scholar]
- Kwedlo, W. A clustering method combining differential evolution with the K-means algorithm. Pattern Recognit. Lett. 2011, 32, 1613–1621. [Google Scholar] [CrossRef]
- Geoffrion, A.M.; Graves, G.W. Multicomodity distribution system design by Benders decomposition. Manag. Sci. 1974, 20, 822–844. [Google Scholar] [CrossRef]
- Camargo, R.S.D.; Miranda, G.; Luna, H.P.L. Benders decomposition for the uncapacitated multiple allocation hub location problem. Comput. Oper. Res. 2008, 35, 1047–1064. [Google Scholar] [CrossRef]
R | CPLEX | CBD | MBD | |||
---|---|---|---|---|---|---|
CPU Time(s) | Iteration | CPU Time(s) | Iteration | CPU Time(s) | ||
0.4 | 2 | 2.74 | 22 | 1881.55 | 7 | 422.91 |
0.6 | 2 | 2.77 | 20 | 1584.61 | 7 | 419.12 |
0.8 | 2 | 2.65 | 26 | 2463.86 | 7 | 420.71 |
0.4 | 3 | 3.97 | 27 | 2478.82 | 8 | 464.60 |
0.6 | 3 | 3.96 | 27 | 2501.41 | 7 | 490.42 |
0.8 | 3 | 3.91 | 32 | 2988.67 | 7 | 414.01 |
No. | City | No. | City | No. | City | |||
---|---|---|---|---|---|---|---|---|
0 | Guam | 0.034 | 7 | Fuzhou | 0.026 | 14 | Busan | 0.026 |
1 | Manila | 0.049 | 8 | Shanghai | 0.032 | 15 | Nagoya | 0.031 |
2 | Hong Kong | 0.025 | 9 | Hakata | 0.043 | 16 | Yokohama | 0.042 |
3 | Yantian | 0.030 | 10 | Osaka | 0.015 | 17 | Tokyo | 0.026 |
4 | Kaohsiung | 0.021 | 11 | Kobe | 0.039 | 18 | Qingdao | 0.049 |
5 | Xiamen | 0.013 | 12 | Lianyungang | 0.018 | 19 | Dalian | 0.042 |
6 | Keelung | 0.020 | 13 | Shimizu | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zheng, J.; Liu, X. Reliable Liner Shipping Hub Location Problem Considering Hub Failure. J. Mar. Sci. Eng. 2023, 11, 818. https://doi.org/10.3390/jmse11040818
Wang Q, Zheng J, Liu X. Reliable Liner Shipping Hub Location Problem Considering Hub Failure. Journal of Marine Science and Engineering. 2023; 11(4):818. https://doi.org/10.3390/jmse11040818
Chicago/Turabian StyleWang, Qian, Jianfeng Zheng, and Xintong Liu. 2023. "Reliable Liner Shipping Hub Location Problem Considering Hub Failure" Journal of Marine Science and Engineering 11, no. 4: 818. https://doi.org/10.3390/jmse11040818
APA StyleWang, Q., Zheng, J., & Liu, X. (2023). Reliable Liner Shipping Hub Location Problem Considering Hub Failure. Journal of Marine Science and Engineering, 11(4), 818. https://doi.org/10.3390/jmse11040818