ENSO Impact on Summer Precipitation and Moisture Fluxes over the Mexican Altiplano
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Climate Data
2.3. The Weather Research Forecasting Model
2.4. Model Setup
2.5. Satellite Imagery
3. Results
3.1. Precipitation Anomalies
3.2. Atmospheric Moisture Flux
3.3. Vertically Integrated Moisture Flux
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavazos, T. Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. J. Clim. 1999, 12, 1506–1523. [Google Scholar] [CrossRef]
- Higgins, R.W.; Douglas, A.; Hahmann, A.N.; Berbery, E.H.; Gutzler, D.; Shuttleworth, W.J.; Stensrud, D.; Amador, J.A.; Carbone, R.; Lobato-Sánchez, R.; et al. Progress in Pan American climate research: The North American monsoon system. Atmosfera 2003, 16, 29–65. [Google Scholar]
- Méndez, M.; Magaña, V. Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Clim. 2010, 23, 1175–1188. [Google Scholar] [CrossRef]
- Pavia, E.G.; Graef, F.; Reyes, J. PDO–ENSO effects in the climate of Mexico. J. Clim. 2006, 19, 6433–6438. [Google Scholar] [CrossRef]
- Douglas, M.W.; Maddox, R.A.; Howard, K.; Reyes, S. The Mexican Monsoon. J. Clim. 1993, 6, 1665–1677. [Google Scholar] [CrossRef]
- Magaña, V.O.; Vázquez, J.L.; Pérez, J.L.; Pérez, J.B. Impact of El Niño on precipitation in Mexico. Geofís. Int. 2003, 42, 313–330. [Google Scholar] [CrossRef]
- Clarke, A.J. An Introduction to the Dynamics of El Niño and the Southern Oscillation, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Englehart, P.J.; Douglas, A.V. The role of eastern North Pacific tropical storms in the rainfall climatology of western Mexico. Int. J. Climatol. 2001, 21, 1357–1370. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. Quantifying southern oscillation-precipitation relationships. J. Clim. 1996, 9, 1043–1059. [Google Scholar] [CrossRef]
- Seager, R.; Kushnir, Y.; Herweijer, C.; Naik, N.; Velez, J. Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Clim. 2005, 18, 4065–4088. [Google Scholar] [CrossRef]
- Castro, C.L.; McKee, T.B.; Pielke, R.A. The relationship of the North American monsoon to tropical and North Pacific Sea surface temperatures as revealed by observational analyses. J. Clim. 2001, 14, 4449–4473. [Google Scholar] [CrossRef]
- Seager, R.; Ting, M.; Davis, M.; Cane, M.; Naik, N.; Nakamura, J.; Stahle, D.W. Mexican drought: An observational modeling and tree ring study of variability and climate change. Atmosfera 2009, 22, 1–31. [Google Scholar]
- Reyes, S.; Mejia-Trejo, A. Tropical perturbations in the eastern Pacific and the precipitation field over northwestern Mexico in relation to the ENSO phenomenon. Int. J. Climatol. 1991, 11, 515–528. [Google Scholar] [CrossRef]
- Zolotokrylin, N.A.; Titkova, T.B.; Brito-Castillo, L. Wet and dry patterns associated with ENSO events in the Sonoran Desert from 2000–2015. J. Arid. Environ. 2016, 134, 21–32. [Google Scholar] [CrossRef]
- Cid-Serrano, L.; Ramírez, S.M.; Alfaro, E.J.; Enfield, D.B. Analysis of the Latin American west coast rainfall predictability using an ENSO index. Atmosfera 2015, 28, 191–203. [Google Scholar] [CrossRef]
- Newman, M.; Alexander, M.A.; Ault, T.R.; Cobb, K.M.; Deser, C.; Di Lonrenzo, E.; Mantua, N.J.; Miller, A.J.; Minobe, S.; Nakamura, H.; et al. The Pacific Decadal Oscillation, Revisited. J. Clim. 2016, 29, 4399–4426. [Google Scholar] [CrossRef]
- Wang, S.; Huang, J.; He, Y.; Guan, Y. Combined effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on Global Land Dry-Wet Changes. Sci. Rep. 2014, 4, 6651. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cook, E.R.; Burnette, D.J.; Villanueva, J.; Cerano, J.; Burns, J.N.; Griffin, D.; Cook, B.I.; Auña, R.; Torbenson, M.C.A.; et al. The Mexican drought atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat. Sci. Rev. 2016, 149, 34–60. [Google Scholar] [CrossRef]
- Vega-Camarena, J.P.; Brito-Castillo, L.; Farfán, L.M.; Gochis, D.J.; Pineda-Martínez, L.F.; Díaz, S.C. Ocean–atmosphere conditions related to severe and persistent droughts in the Mexican Altiplano. Int. J. Climatol. 2018, 38, 853–866. [Google Scholar] [CrossRef]
- Martínez-Sánchez, J.N.; Cavazos, T. Eastern tropical Pacific hurricane variability and landfalls on Mexican coasts. Clim. Res. 2014, 58, 221–234. [Google Scholar] [CrossRef]
- Farfán, L.M.; Barrett, B.S.; Raga, G.B.; Delgado, J.J. Characteristics of mesoscale convection over northwestern Mexico, the Gulf of California, and Baja California Peninsula. Int. J. Climatol. 2021, 41, E1062–E1084. [Google Scholar] [CrossRef]
- Brito-Castillo, L.; Vivoni, E.R.; Gochis, D.J.; Filonov, A.; Tereshchenko, I.; Monzon, C. An anomaly in the occurrence of the month of maximum precipitation distribution in northwest Mexico. J. Arid. Environ. 2010, 74, 531–539. [Google Scholar] [CrossRef]
- Vega-Camarena, J.P.; Brito-Castillo, L.; Farfán, L.M. Contrasting rainfall behavior between the Pacific coast and the Mexican Altiplano. Clim. Res. 2018, 76, 225–240. [Google Scholar] [CrossRef]
- Brito-Castillo, L.; Farfán, L.M.; Antemate-Vealsco, G.J. Effect of the Trans-Volcanic Axis on meridional propagation of summer precipitation in western Mexico. Int. J. Climatol. 2022, 42, 9304–9318. [Google Scholar] [CrossRef]
- Vera, C.; Higgins, W.; Amador, J.; Ambrizzi, R.; Garreaud, R.; Gochis, D.J.; Gutzler, D.; Lettenmaier, D.; Marengo, J.; Mechoso, C.R.; et al. Toward a unified view of the American monsoon systems. J. Clim.-Spec. Sect. 2006, 19, 4977–5000. [Google Scholar] [CrossRef]
- Servicio Meteorológico Nacional (SMN). Información Estadística Climatológica. Available online: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica (accessed on 30 November 2022).
- Colle, B.A.; Mass, C.F. The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Weather. Rev. 2000, 128, 593–617. [Google Scholar] [CrossRef]
- Fritsch, J.M.; Houze, R.A., Jr.; Adler, R.; Bluestein, H.; Bosart, L.; Brown, J.; Carr, F.; Davis, C.; Johnson, R.H.; Junker, N.; et al. Quantitative precipitation forecasting: Report of the Eighth Prospectus Development Team, U.S. Weather Research Program. Bull. Am. Meteorol. Soc. 1998, 79, 285–299. [Google Scholar]
- Stoelinga, M.T.; Hobbs, P.V.; Mass, C.F.; Locatelli, J.D.; Colle, B.A.; Houze, R.A.; Rangno, A.L.; Bond, N.A.; Smull, B.F.; Rasmussen, R.M.; et al. Improvement of microphysical parameterization through observational verification experiment. Bull. Am. Meteorol. Soc. 2003, 84, 1807–1826. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019; Volume 145, p. 550. [Google Scholar]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 43–360. [Google Scholar] [CrossRef]
- Mo, K.C.; Chelliah, M.; Carrera, M.; Higgins, R.W.; Ebisuzaki, W. Atmospheric moisture transport over the United States and Mexico as evaluated from the NCEP Regional Reanalysis. J. Hydrometeorol. 2005, 6, 710–728. [Google Scholar] [CrossRef]
- SAGARPA (Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). Base de Datos de PROCAMPO; Delegación Zacatecas: Zacatecas, Mexico, 2003. [Google Scholar]
- Ropelewski, C.F.; Halpert, M.S. North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Weather Rev. 1986, 114, 2352–2362. [Google Scholar] [CrossRef]
- Castro, C.L.; Chang, H.I.; Dominguez, F.; Carrillo, C.; Schemm, J.K.; Juang, H.M.H. Can a regional climate model improve the ability to forecast the North American monsoon? J. Clim. 2012, 25, 8212–8237. [Google Scholar] [CrossRef]
- Dominguez, F.; Kumar, P.; Vivoni, E.R. Precipitation recycling variability and Ecoclimatological stability—A study using NARR data. Part II: North American monsoon region. J. Clim. 2008, 21, 5187–5203. [Google Scholar] [CrossRef]
- Turrent, C.; Cavazos, T. Role of the land-sea thermal contrast in the interannual modulation of the North American Monsoon. Geophys. Res. Lett. 2009, 36, L02808. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Gimeno, L.; Nieto, R.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Azorin-Molina, C. A multiscalar global evaluation of the impact of ENSO on droughts. J. Geophys. Res. Atmos. 2011, 116, D20. [Google Scholar] [CrossRef]
- Cerezo-Mota, R.; Cavazos, T.; Arritt, R.; Torres-Alavez, A.; Sieck, K.; Nikulin, G.; Salinas-Prieto, J.A. CORDEX-NA: Factors inducing dry/wet years on the North American Monsoon region. Int. J. Climatol. 2016, 36, 824–836. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Sud, Y.C.; Schubert, S.D.; Walker, G.K. Numerical simulation of the large-scale North American monsoon water sources. J. Geophys. Res. Atmos. 2003, 108, D16. [Google Scholar] [CrossRef]
- Torres-Alavez, A.; Cavazos, T.; Turrent, C. Land–sea thermal contrast and intensity of the North American monsoon under climate change conditions. J. Clim. 2014, 27, 4566–4580. [Google Scholar] [CrossRef]
- Jana, S.; Rajagopalan, B.; Alexander, M.A.; Ray, A.J. Understanding the dominant sources and tracks of moisture for summer rainfall in the southwest United States. J. Geophys. Res. Atmos. 2018, 123, 4850–4870. [Google Scholar] [CrossRef]
- Bracken, C.; Rajagopalan, B.; Alexander, M.; Gangopadhyay, S. Spatial variability of seasonal extreme precipitation in the western United States. J. Geophys. Res. Atmos. 2015, 120, 4522–4533. [Google Scholar] [CrossRef]
- Wu, M.C.; Schubert, S.D.; Suarez, M.J.; Huang, M.E. An analysis of moisture fluxes into the Gulf of California. J. Clim. 2014, 22, 2216–2239. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, S.; Jiang, X.; Zhao, P. Seasonal–interannual variation and prediction of wet and dry season rainfall over the maritime continent: Roles of ENSO and monsoon circulation. J. Clim. 2016, 29, 3675–3695. [Google Scholar] [CrossRef]
No | Station Name, Year | R2_RH98 | RMSE98 | R2_T98 | RMSE98 | R2_RH05 | RMSE05 | R2_T05 | RMSE05 | Elevation, m |
---|---|---|---|---|---|---|---|---|---|---|
1 | Tepic | 0.56 | 11.1 | 0.73 | 2.10 | 0.55 | 11.18 | 0.57 | 2.80 | 963 |
2 | Durango | ND | ND | 0.80 | 2.49 | 0.60 | 16.93 | 0.75 | 2.85 | 1 871 |
3 | Zacatecas | 0.60 | 6.01 | 0.77 | 2.40 | 0.55 | 14.51 | 0.77 | 2.71 | 2 615 |
Year | ENSO-Conditions | Weather Pattern | Rainfall-Conditions |
---|---|---|---|
1998 | Transition from El Niño to La Niña | Cyclonic circulation in Northern Mexico at 200 hPa. Westerly inland flow at 1000 hPa. | Coast: wet |
Altiplano: dry | |||
1999 | La Niña | Anticyclonic circulation in Northwestern Mexico at 200 hPa. Westerly flow at 1000 hPa. | Coast: wet |
Altiplano: dry | |||
2005 | Neutral | Two anticyclone circulations, one centered in Northwest Mexico and the other one in the Northern Gulf of Mexico at upper levels. Westerly flow at 1000 hPa with higher humidity on the Sinaloa Coast. | Coast: dry |
Altiplano: dry | |||
2006 | Transition from La Niña to El Niño | Anticyclone centered south of the Gulf of California at 200 hPa. Southeast flow at 500 hPa. | Coast: dry |
Altiplano: wet | |||
2010 | Transition from El Niño to La Niña | Anticyclonic circulation positioned further to the north at upper and middle level. Westerly inland flow at 1000 hPa. | Coast: wet |
Altiplano: wet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Camarena, J.P.; Brito-Castillo, L.; Pineda-Martínez, L.F.; Farfán, L.M. ENSO Impact on Summer Precipitation and Moisture Fluxes over the Mexican Altiplano. J. Mar. Sci. Eng. 2023, 11, 1083. https://doi.org/10.3390/jmse11051083
Vega-Camarena JP, Brito-Castillo L, Pineda-Martínez LF, Farfán LM. ENSO Impact on Summer Precipitation and Moisture Fluxes over the Mexican Altiplano. Journal of Marine Science and Engineering. 2023; 11(5):1083. https://doi.org/10.3390/jmse11051083
Chicago/Turabian StyleVega-Camarena, José P., Luis Brito-Castillo, Luis F. Pineda-Martínez, and Luis M. Farfán. 2023. "ENSO Impact on Summer Precipitation and Moisture Fluxes over the Mexican Altiplano" Journal of Marine Science and Engineering 11, no. 5: 1083. https://doi.org/10.3390/jmse11051083
APA StyleVega-Camarena, J. P., Brito-Castillo, L., Pineda-Martínez, L. F., & Farfán, L. M. (2023). ENSO Impact on Summer Precipitation and Moisture Fluxes over the Mexican Altiplano. Journal of Marine Science and Engineering, 11(5), 1083. https://doi.org/10.3390/jmse11051083