Influence of Oyster Shell Pyrolysis Temperature on Sediment Permeability and Remediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oyster Shells and Sediments
2.2. Cations Analysis
2.3. Variable-Head Permeability Test
2.4. Pore Water Analysis
2.5. Leachate Analysis
3. Results and Discussion
3.1. Cation Concentration
3.2. Changes in Sediment Permeability
3.3. Changes in Pore Water
3.4. Changes in Leachate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baek, E.Y. Oyster shell recycling and marine ecosystems: A comparative analysis in the Republic of Korea and Japan. J. Coast. Res. 2021, 114, 350–354. [Google Scholar] [CrossRef]
- Ramakrishna, C.; Thenepalli, T.; Nam, S.Y.; Kim, C.; Ahn, J.W. Extraction of precipitated calcium carbonate from oyster shell waste and its applications. J. Energy Eng. 2018, 27, 51–58. [Google Scholar] [CrossRef]
- Asaoka, S.; Yamamoto, T.; Kondo, S.; Hayakawa, S. Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresour. Technol. 2009, 100, 4127–4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, T.; Kondo, S.; Kim, K.H.; Asaoka, S.; Yamamoto, H.; Tokuoka, M.; Hibino, T. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells. Mar. Pollut. Bull. 2012, 64, 2428–2434. [Google Scholar] [CrossRef] [PubMed]
- Patil, M.P.; Woo, H.E.; Lee, I.C.; Nakashita, S.; Kim, K.; Kim, J.O.; Kim, K. A microcosm study of microbial community profiles during sediment remediation using pyrolyzed oyster shells. J. Environ. Manag. 2022, 316, 115229. [Google Scholar] [CrossRef]
- Patil, M.P.; Woo, H.E.; Kim, J.O.; Kim, K. Field study on short-term changes in benthic environment and benthic microbial communities using pyrolyzed oyster shells. Sci. Total Environ. 2022, 824, 153891. [Google Scholar] [CrossRef]
- Jeong, I.; Woo, H.E.; Lee, I.C.; Kim, J.; Kim, K. Evaluation of nutrients removal using pyrolyzed oyster shells. J. Korean Soc. Mar. Environ. Saf. 2019, 25, 906–913. [Google Scholar] [CrossRef]
- Khirul, M.A.; Kim, B.G.; Cho, D.; Yoo, G.; Kwon, S.H. Effect of oyster shell powder on nitrogen releases from contaminated marine sediment. Environ. Eng. Res. 2020, 25, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.C.; Woo, H.E.; Jeong, I.; Oh, S.J.; Lee, S.H.; Kim, K. Changes in sediment properties caused by a covering of oyster shells pyrolyzed at a low temperature. J. Korean Soc. Mar. Environ. Saf. 2019, 25, 74–80. [Google Scholar] [CrossRef]
- Jeong, I.; Woo, H.E.; Lee, I.C.; Yoon, S.; Kim, K. Effects of particle size and pyrolysis temperature of oyster shell on change of coastal benthic environment. J. Korean Soc. Mar. Environ. Saf. 2020, 26, 873–880. [Google Scholar] [CrossRef]
- Woo, H.E.; Jeong, I.; Lee, I.C.; Kim, K. A study on the change of shear strength of coastal muddy sediment due to the mixing of oyster shells with different pyrolysis temperature and particle size. J. Soil Ground. Environ. 2021, 26, 17–23. [Google Scholar] [CrossRef]
- Wang, M.; Yi, M.; Lu, M.; Zhu, X.; Chen, G.; Gao, F.; Liu, Z.; Cao, J.; Zhang, D. Effect of in situ sediment remediation combining oyster shells and bottom microporous aeration on nitrogen removal and microbiota. Aqua. Res. 2019, 50, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Huettel, M.; Berg, P.; Kostka, J.E. Benthic exchange and biogeochemical cycling in permeable sediments. Annual Rev. Mar. Sci. 2014, 6, 23–51. [Google Scholar] [CrossRef]
- Smith, C.J.; Oster, J.D.; Sposito, G. Potassium and magnesium in irrigation water quality assessment. Agric. Water Manag. 2015, 157, 59–64. [Google Scholar] [CrossRef]
- Xu, S.; Bian, M.; Li, C.; Wu, X.; Wang, Z. Effects of calcium concentration and differential settlement on permeability characteristics of bentonite-sand mixtures. Appl. Clay Sci. 2018, 153, 16–22. [Google Scholar] [CrossRef]
- Etim, R.K.; Eberemu, A.O.; Osinubi, K.J. Stabilization of black cotton soil with lime and iron ore tailings admixture. Transp. Geotech. 2017, 10, 85–95. [Google Scholar] [CrossRef]
- Al-Swaidani, A.; Hammoud, I.; Meziab, A. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. J. Rock Mech. Geotech. Eng. 2016, 8, 714–725. [Google Scholar] [CrossRef] [Green Version]
- Hamester, M.R.R.; Balzer, P.S.; Becker, D. Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Mater. Res. 2012, 15, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Nakajima, T.; Asaoka, S. Changes in physical and chemical characteristics and reactivity to hydrogen sulfide of calcined oyster shells. Fish Sci. 2022, 88, 609–616. [Google Scholar] [CrossRef]
- Moon, D.H.; Wazne, M.; Cheong, K.H.; Chang, Y.Y.; Baek, K.; Ok, Y.S.; Park, J.H. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag. Environ. Sci. Pollut. Res. 2015, 22, 11162–11169. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, R.; Clark, M. Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell. J. Colloid Interface Sci. 2010, 350, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Yoon, G.L.; Kwon, O.S.; Im, Y.J.; Yang, E.I. Engineering Characteristics of waste oyster shell for recycling. J. Korean Soc. Civ. Eng. 2001, 21, 421–431. [Google Scholar]
- ASTM D5856–95(2007); Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter. ASTM International: West Conshohocken, PA, USA, 2007.
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Namasivayam, C.; Sakoda, A.; Suzuki, M. Removal of phosphate by adsorption onto oyster shell powder—Kinetic studies. J. Chem. Technol. Biotechnol. 2005, 80, 356–358. [Google Scholar] [CrossRef]
- Roques, H.; Nugroho-Jeudy, L.; Lebugle, A. Phosphorus removal from wastewater by half-burned dolomite. Water Res. 1991, 25, 959–965. [Google Scholar] [CrossRef]
- Zhao, S.; Shi, X.; Li, C.; Zhang, S.; Sun, B.; Wu, Y.; Zhao, S. Diffusion flux of phosphorus nutrients at the sediment–water interface of the Ulansuhai Lake in northern China. Water Sci. Technol. 2017, 75, 1455–1465. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K. Remediation of contaminated intertidal sediment by increasing permeability using active capping material. J. Environ. Manag. 2020, 253, 109769. [Google Scholar] [CrossRef] [PubMed]
- Eklind, Y.; Kirchmann, H. Composting and storage of organic household waste with different litter amendments. II: Nitrogen turnover and losses. Bioresour. Technol. 2000, 74, 125–133. [Google Scholar] [CrossRef]
- Gómez, M.A.; Hontoria, E.; González-López, J. Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter. J. Hazard. Mater. 2002, 90, 267–278. [Google Scholar] [CrossRef]
Test | Properties of Sediment (Pore Water) | |||
---|---|---|---|---|
Initial (Before-Permeability Test) | After–Permeability Test (Sediment Covered with) | |||
Sand | POS350 | POS600 | ||
pH | 7.64 ± 0.02 | 7.63 ± 0.01 | 7.76 ± 0.02 | 7.95 ± 0.01 |
PO4-P (mg-P/L) | 2.20 ± 0.07 | 1.55 ± 0.04 | 1.65 ± 0.04 | 1.35 ± 0.04 |
NH3-N (mg-N/L) | 23.75 ± 0.18 | 11.00 ± 0.00 | 10.75 ± 0.18 | 5.50 ± 0.35 |
NO2-N (mg-N/L) | 0.07 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 |
NO3-N (mg-N/L) | 0.14 ± 0.00 | 0.18 ± 0.00 | 0.16 ± 0.00 | 0.18 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, M.P.; Woo, H.-E.; Yoon, S.; Kim, K. Influence of Oyster Shell Pyrolysis Temperature on Sediment Permeability and Remediation. J. Mar. Sci. Eng. 2023, 11, 934. https://doi.org/10.3390/jmse11050934
Patil MP, Woo H-E, Yoon S, Kim K. Influence of Oyster Shell Pyrolysis Temperature on Sediment Permeability and Remediation. Journal of Marine Science and Engineering. 2023; 11(5):934. https://doi.org/10.3390/jmse11050934
Chicago/Turabian StylePatil, Maheshkumar Prakash, Hee-Eun Woo, Seokjin Yoon, and Kyunghoi Kim. 2023. "Influence of Oyster Shell Pyrolysis Temperature on Sediment Permeability and Remediation" Journal of Marine Science and Engineering 11, no. 5: 934. https://doi.org/10.3390/jmse11050934